Wooram Lee, Caglar Ozdag, Yigit Aydogan, J. Plouchart, M. Yeck, A. Cabuk, A. Kepkep, Emre Apaydin, A. Valdes-Garcia
{"title":"A fully-integrated 94-GHz 16-element dual-output phased-array transmitter in SiGe BiCMOS with PSAT>6.5 dBm up to 105 °C","authors":"Wooram Lee, Caglar Ozdag, Yigit Aydogan, J. Plouchart, M. Yeck, A. Cabuk, A. Kepkep, Emre Apaydin, A. Valdes-Garcia","doi":"10.1109/CSICS.2017.8240454","DOIUrl":null,"url":null,"abstract":"A 94-GHz 16-element phased array transmitter IC in a 130 nm BiCMOS technology is reported. The IC integrates 16 transmitter front ends with two independent outputs, a 1-to-16 power splitter, an IF-to-RF up-converter, a frequency synthesizer with continuous lock detection, an IF/baseband, and digital circuitry including serial interface and front-end memory within an IC size of 6.7 mm × 5.6 mm. A milimeter-wave (mmWave) up-conversion mixer design is introduced which enables a TX output signal-to-LO leakage ratio higher than 35 dB. On-wafer measurements at 94GHz taken at 25°C show IF-to-RF conversion gain of 35 dB, oP1dB of 4 dBm, Psat of 7.8 dBm and 360° phase shift capability per element, with a total power consumption of 3 W. The IC maintains Psat > 6.5 dBm at 94 GHz up to 105 °C.","PeriodicalId":129729,"journal":{"name":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2017.8240454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
A 94-GHz 16-element phased array transmitter IC in a 130 nm BiCMOS technology is reported. The IC integrates 16 transmitter front ends with two independent outputs, a 1-to-16 power splitter, an IF-to-RF up-converter, a frequency synthesizer with continuous lock detection, an IF/baseband, and digital circuitry including serial interface and front-end memory within an IC size of 6.7 mm × 5.6 mm. A milimeter-wave (mmWave) up-conversion mixer design is introduced which enables a TX output signal-to-LO leakage ratio higher than 35 dB. On-wafer measurements at 94GHz taken at 25°C show IF-to-RF conversion gain of 35 dB, oP1dB of 4 dBm, Psat of 7.8 dBm and 360° phase shift capability per element, with a total power consumption of 3 W. The IC maintains Psat > 6.5 dBm at 94 GHz up to 105 °C.