Applying Hopfield network to find the minimum cost coverage of a Boolean function

P. Chu
{"title":"Applying Hopfield network to find the minimum cost coverage of a Boolean function","authors":"P. Chu","doi":"10.1109/GLSV.1991.143963","DOIUrl":null,"url":null,"abstract":"To find a minimal expression of a Boolean function includes a step to select the minimum cost cover from a set of implicants. Since the selection process is an NP-complete problem, to find an optimal solution is impractical for large input data size. In this paper, the author tries to apply neural network approach to solve this problem. He first formulates this problem and then defines an 'energy function' and maps it to a modified Hopfield network, which will automatically search for minima.<<ETX>>","PeriodicalId":261873,"journal":{"name":"[1991] Proceedings. First Great Lakes Symposium on VLSI","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings. First Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLSV.1991.143963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To find a minimal expression of a Boolean function includes a step to select the minimum cost cover from a set of implicants. Since the selection process is an NP-complete problem, to find an optimal solution is impractical for large input data size. In this paper, the author tries to apply neural network approach to solve this problem. He first formulates this problem and then defines an 'energy function' and maps it to a modified Hopfield network, which will automatically search for minima.<>
应用Hopfield网络求布尔函数的最小代价覆盖
寻找布尔函数的最小表达式包括从一组隐含项中选择最小成本覆盖的步骤。由于选择过程是一个np完全问题,对于大的输入数据量,找到一个最优解是不切实际的。本文尝试用神经网络的方法来解决这一问题。他首先阐述了这个问题,然后定义了一个“能量函数”,并将其映射到一个改进的Hopfield网络,该网络将自动搜索最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信