Yield Prediction with Machine Learning and Parameter Limits in Semiconductor Production

R. Busch, Michael G. Wahl, P. Czerner, B. Choubey
{"title":"Yield Prediction with Machine Learning and Parameter Limits in Semiconductor Production","authors":"R. Busch, Michael G. Wahl, P. Czerner, B. Choubey","doi":"10.1109/ISSM55802.2022.10027006","DOIUrl":null,"url":null,"abstract":"Yield is an important cost factor in wafer production. Therefore, continuous data-driven yield monitoring and optimization provides opportunities to reduce production costs. Predicting yield during production would reveal its relationships with production parameters enabling dynamic optimization with a preventive and active increase in yield. In our investigations, we will first predict the yield based on one yield critical process step and later on with the data of four process steps. We will use different machine learning methods for this. Furthermore, we will look at whether the classification into good and bad yield values with these methods provides better results for the prediction. Another point of our investigations are the parameter limits of the individual methods. We show that these can be controlled by a simple method and optimised, if necessary.","PeriodicalId":130513,"journal":{"name":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM55802.2022.10027006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Yield is an important cost factor in wafer production. Therefore, continuous data-driven yield monitoring and optimization provides opportunities to reduce production costs. Predicting yield during production would reveal its relationships with production parameters enabling dynamic optimization with a preventive and active increase in yield. In our investigations, we will first predict the yield based on one yield critical process step and later on with the data of four process steps. We will use different machine learning methods for this. Furthermore, we will look at whether the classification into good and bad yield values with these methods provides better results for the prediction. Another point of our investigations are the parameter limits of the individual methods. We show that these can be controlled by a simple method and optimised, if necessary.
半导体生产中基于机器学习和参数限制的良率预测
良率是晶圆生产中一个重要的成本因素。因此,持续的数据驱动的产量监测和优化为降低生产成本提供了机会。在生产过程中预测产量将揭示其与生产参数的关系,从而实现动态优化,预防和主动增加产量。在我们的研究中,我们将首先根据一个产率关键工艺步骤预测产率,然后用四个工艺步骤的数据预测产率。我们将使用不同的机器学习方法。此外,我们将研究用这些方法对良莠产量值的分类是否能为预测提供更好的结果。我们研究的另一点是个别方法的参数极限。我们表明,这些可以通过一个简单的方法来控制,并在必要时进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信