{"title":"A Flexible and Efficient Loop Closure Detection Based on Motion Knowledge","authors":"Bingxi Liu, Fulin Tang, Yu-Ting Fu, Yanqun Yang, Yihong Wu","doi":"10.1109/ICRA48506.2021.9561126","DOIUrl":null,"url":null,"abstract":"Loop closure detection (LCD) is an essential module for simultaneous localization and mapping (SLAM), which can correct accumulated errors after long-term explorations. The widely used bag-of-words (BoW) model can not satisfy well the requirements of both low time consumption and high accuracy for a mobile platform. In this paper, we propose a novel LCD algorithm based on motion knowledge. We give a flexible and efficient detection strategy and also give flexible and efficient combinations of a global binary feature extracted by convolutional neural network (CNN) and a hand-crafted local binary feature. We take a continuous motion model, grid-based motion statistics (GMS) and motion states as motion knowledge. Furthermore, we fuse the proposed LCD with a visual-inertial odometry (VIO) system to correct localization errors by a pose graph optimization. Comparative experiments with state-of-the-art LCD algorithms on typical datasets have been carried out, and the results demonstrate that our proposed method achieves quite high recall rates and quite high speed at 100% precision. Moreover, experimental results from VIO further validate the effectiveness of the proposed method.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Loop closure detection (LCD) is an essential module for simultaneous localization and mapping (SLAM), which can correct accumulated errors after long-term explorations. The widely used bag-of-words (BoW) model can not satisfy well the requirements of both low time consumption and high accuracy for a mobile platform. In this paper, we propose a novel LCD algorithm based on motion knowledge. We give a flexible and efficient detection strategy and also give flexible and efficient combinations of a global binary feature extracted by convolutional neural network (CNN) and a hand-crafted local binary feature. We take a continuous motion model, grid-based motion statistics (GMS) and motion states as motion knowledge. Furthermore, we fuse the proposed LCD with a visual-inertial odometry (VIO) system to correct localization errors by a pose graph optimization. Comparative experiments with state-of-the-art LCD algorithms on typical datasets have been carried out, and the results demonstrate that our proposed method achieves quite high recall rates and quite high speed at 100% precision. Moreover, experimental results from VIO further validate the effectiveness of the proposed method.