Active Expansion Sampling of Magnetic Near-Fields in Unbounded Regions

N. Seliger, Georg Faltlhauser
{"title":"Active Expansion Sampling of Magnetic Near-Fields in Unbounded Regions","authors":"N. Seliger, Georg Faltlhauser","doi":"10.1109/SPI54345.2022.9874944","DOIUrl":null,"url":null,"abstract":"We present a fast and accurate measurement technique for magnetic near-fields by employing an adaptive sampling method with unbounded input space. The proposed machine learning algorithm is tested against uniform sampling on a printed circuit board test structure and a buck converter. We demonstrate allocation of multiple, separated regions with predefined lateral field limits at MHz frequencies. Compared to uniform sampling, active expansion sampling identifies contours of given field limits in less than 3% of the reference measurement time.","PeriodicalId":285253,"journal":{"name":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI54345.2022.9874944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a fast and accurate measurement technique for magnetic near-fields by employing an adaptive sampling method with unbounded input space. The proposed machine learning algorithm is tested against uniform sampling on a printed circuit board test structure and a buck converter. We demonstrate allocation of multiple, separated regions with predefined lateral field limits at MHz frequencies. Compared to uniform sampling, active expansion sampling identifies contours of given field limits in less than 3% of the reference measurement time.
无界区域磁场主动展开采样
提出了一种基于无界输入空间的自适应采样方法的磁场近场快速精确测量技术。提出的机器学习算法在印刷电路板测试结构和降压变换器上进行了均匀采样测试。我们演示了在MHz频率下具有预定义横向场限制的多个分离区域的分配。与均匀采样相比,主动扩展采样在不到3%的参考测量时间内识别给定现场极限的轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信