Motion Control for Biped Robot via DDPG-based Deep Reinforcement Learning

Xiaoguang Wu, Shaowei Liu, Tianci Zhang, Lei Yang, Yanhui Li, Tingjin Wang
{"title":"Motion Control for Biped Robot via DDPG-based Deep Reinforcement Learning","authors":"Xiaoguang Wu, Shaowei Liu, Tianci Zhang, Lei Yang, Yanhui Li, Tingjin Wang","doi":"10.1109/WRC-SARA.2018.8584227","DOIUrl":null,"url":null,"abstract":"In the study of the passive biped robot, the avoidance of fall over is always an important direction of the research. In this paper, we propose Deep Deterministic Policy Gradient (DDPG) to control the biped robot walk steadily on the slope. For improve the speed of DDPG training, the DDPG used in the paper is improved by parallel actors and Prioritized Experience Replay (PER). In the simulation, we control different initial states that cause the biped robot to fall over. After the control, the biped robot can walk stably, which indicating that DDPG can effectively control the fall over of the biped robot.","PeriodicalId":185881,"journal":{"name":"2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WRC-SARA.2018.8584227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In the study of the passive biped robot, the avoidance of fall over is always an important direction of the research. In this paper, we propose Deep Deterministic Policy Gradient (DDPG) to control the biped robot walk steadily on the slope. For improve the speed of DDPG training, the DDPG used in the paper is improved by parallel actors and Prioritized Experience Replay (PER). In the simulation, we control different initial states that cause the biped robot to fall over. After the control, the biped robot can walk stably, which indicating that DDPG can effectively control the fall over of the biped robot.
基于ddpg深度强化学习的双足机器人运动控制
在被动双足机器人的研究中,避免跌倒一直是一个重要的研究方向。在本文中,我们提出了深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)来控制双足机器人在斜坡上的稳定行走。为了提高DDPG的训练速度,本文采用并行actor和优先体验回放(PER)对DDPG进行了改进。在仿真中,我们控制了导致双足机器人摔倒的不同初始状态。控制后,双足机器人行走稳定,说明DDPG可以有效控制双足机器人的摔倒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信