Any-time probabilistic switching model using Bayesian networks

Shiva Shankar Ramani, S. Bhanja
{"title":"Any-time probabilistic switching model using Bayesian networks","authors":"Shiva Shankar Ramani, S. Bhanja","doi":"10.1145/1013235.1013263","DOIUrl":null,"url":null,"abstract":"Modeling and estimation of switching activities remain to be important problems in low-power design and fault analysis. A probabilistic Bayesian network based switching model can explicitly model all spatio-temporal dependency relationships in a combinational circuit, resulting in zero-error estimates. However, the space-time requirements of exact estimation schemes, based on this model, increase with circuit complexity. This paper explores a non-simulative, importance sampling based, probabilistic estimation strategy that scales well with circuit complexity. It has the any-time aspect of simulation and the input pattern independence of probabilistic models.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013235.1013263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Modeling and estimation of switching activities remain to be important problems in low-power design and fault analysis. A probabilistic Bayesian network based switching model can explicitly model all spatio-temporal dependency relationships in a combinational circuit, resulting in zero-error estimates. However, the space-time requirements of exact estimation schemes, based on this model, increase with circuit complexity. This paper explores a non-simulative, importance sampling based, probabilistic estimation strategy that scales well with circuit complexity. It has the any-time aspect of simulation and the input pattern independence of probabilistic models.
基于贝叶斯网络的任意时间概率切换模型
开关活动的建模和估计一直是低功耗设计和故障分析中的一个重要问题。基于概率贝叶斯网络的开关模型可以显式地模拟组合电路中的所有时空依赖关系,从而实现零误差估计。然而,基于该模型的精确估计方案的时空要求随着电路复杂度的增加而增加。本文探讨了一种非模拟的、基于重要性抽样的概率估计策略,该策略可以很好地扩展电路的复杂性。它具有仿真的任意时效性和概率模型的输入模式独立性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信