Mastering Windows: Improving Reconstruction

T. Theußl, H. Hauser, E. Gröller
{"title":"Mastering Windows: Improving Reconstruction","authors":"T. Theußl, H. Hauser, E. Gröller","doi":"10.1145/353888.353906","DOIUrl":null,"url":null,"abstract":"Ideal reconstruction filters, for function or arbitrary derivative reconstruction, have to be bounded in order to be practicable since they are infinite in their spatial extent. This can be accomplished by multiplying them with windowing functions. In this paper we discuss and assess the quality of commonly used windows and show that most of them are unsatisfactory in terms of numerical accuracy. The best performing windows are Blackman, Kaiser and Gaussian windows. The latter two are particularly useful since both have a parameter to control their shape, which, on the other hand, requires to find appropriate values for these parameters. We show how to derive optimal parameter values for Kaiser and Gaussian windows using a Taylor series expansion of the convolution sum. Optimal values for function and first derivative reconstruction for window widths of two, three, four and five are presented explicitly.","PeriodicalId":189891,"journal":{"name":"2000 IEEE Symposium on Volume Visualization (VV 2000)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE Symposium on Volume Visualization (VV 2000)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/353888.353906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Ideal reconstruction filters, for function or arbitrary derivative reconstruction, have to be bounded in order to be practicable since they are infinite in their spatial extent. This can be accomplished by multiplying them with windowing functions. In this paper we discuss and assess the quality of commonly used windows and show that most of them are unsatisfactory in terms of numerical accuracy. The best performing windows are Blackman, Kaiser and Gaussian windows. The latter two are particularly useful since both have a parameter to control their shape, which, on the other hand, requires to find appropriate values for these parameters. We show how to derive optimal parameter values for Kaiser and Gaussian windows using a Taylor series expansion of the convolution sum. Optimal values for function and first derivative reconstruction for window widths of two, three, four and five are presented explicitly.
掌握Windows:改进重建
理想的重构滤波器,对于函数或任意导数重构,必须是有界的,因为它们的空间范围是无限的。这可以通过将它们与窗口函数相乘来实现。在本文中,我们讨论和评估了常用的窗户的质量,并表明大多数窗户在数值精度方面令人不满意。表现最好的窗口是Blackman、Kaiser和高斯窗口。后两者特别有用,因为它们都有一个参数来控制它们的形状,另一方面,这需要为这些参数找到合适的值。我们展示了如何使用卷积和的泰勒级数展开来推导凯撒窗和高斯窗的最优参数值。明确地给出了窗宽为2、3、4和5时函数和一阶导数重构的最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信