Networks on silicon: blessing or nightmare?

P. Wielage, K. Goossens
{"title":"Networks on silicon: blessing or nightmare?","authors":"P. Wielage, K. Goossens","doi":"10.1109/DSD.2002.1115369","DOIUrl":null,"url":null,"abstract":"Continuing VLSI technology scaling raises several deep submicron (DSM) problems like relatively slow interconnect, power dissipation and distribution, and signal integrity. Those problems are encountered particularly on long wires for global interconnect. As clock frequencies increase, scaled wires become relatively slower and on-chip communication will be the limiting performance factor of future chips. We explain why efficiently sharing of the wires for long distance communication is the solution to this problem. We introduce networks on silicon (NoS), that route packets over shared (semi)-global wires. NoS performance is expected to be high, but comes at a cost. Balancing the performance and cost of a NoS is a major challenge, and we believe busses still have a role to play.","PeriodicalId":330609,"journal":{"name":"Proceedings Euromicro Symposium on Digital System Design. Architectures, Methods and Tools","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Euromicro Symposium on Digital System Design. Architectures, Methods and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2002.1115369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

Abstract

Continuing VLSI technology scaling raises several deep submicron (DSM) problems like relatively slow interconnect, power dissipation and distribution, and signal integrity. Those problems are encountered particularly on long wires for global interconnect. As clock frequencies increase, scaled wires become relatively slower and on-chip communication will be the limiting performance factor of future chips. We explain why efficiently sharing of the wires for long distance communication is the solution to this problem. We introduce networks on silicon (NoS), that route packets over shared (semi)-global wires. NoS performance is expected to be high, but comes at a cost. Balancing the performance and cost of a NoS is a major challenge, and we believe busses still have a role to play.
芯片网络:祝福还是噩梦?
超大规模集成电路技术的持续扩展引发了几个深亚微米(DSM)问题,如相对缓慢的互连、功耗和分布以及信号完整性。这些问题在全球互连的长线上尤其容易遇到。随着时钟频率的增加,尺度线变得相对较慢,片上通信将成为未来芯片的限制性能因素。我们解释了为什么有效地共享长距离通信线路是解决这个问题的办法。我们介绍了硅上的网络(NoS),它通过共享(半)全局线路路由数据包。NoS的性能预计会很高,但这是有代价的。平衡NoS的性能和成本是一项重大挑战,我们相信总线仍然可以发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信