Recognition of microRNA-binding sites in proteins from sequences using Laplacian Support Vector Machines with a hybrid feature

Jiansheng Wu, Wei Han, Dong Hu, Xin Xu, Shancheng Yan, L. Tang
{"title":"Recognition of microRNA-binding sites in proteins from sequences using Laplacian Support Vector Machines with a hybrid feature","authors":"Jiansheng Wu, Wei Han, Dong Hu, Xin Xu, Shancheng Yan, L. Tang","doi":"10.1109/BMEI.2013.6746990","DOIUrl":null,"url":null,"abstract":"The recognition of microRNA (miRNA)-binding residues in proteins would further enhance our understanding of how miRNAs silence their target genes and some relevant biological processes. Due to the insufficient labeled examples, traditional methods such as SVMs could not work well on such problems. Thus, we propose a semi-supervised learning method, i.e., Laplacian Support Vector Machine (LapSVM) for recognizing miRNA-binding residues in proteins from sequences by making use of both labeled and unlabeled data in this article. A hybrid feature is put forward for coding instances which incorporates evolutionary information of the amino acid sequence and mutual interaction propensities in protein-miRNA complex structures. The results indicate that the LapSVM model receives good performance with a F1 score of 22.06±0.28% and an AUC (area under the ROC curve) value of 0.760±0.043. A web server called MBindR is built and freely available at http:// cbi.njupt.edu.cn/MBindR/MBindR.htm for academic usage.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6746990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The recognition of microRNA (miRNA)-binding residues in proteins would further enhance our understanding of how miRNAs silence their target genes and some relevant biological processes. Due to the insufficient labeled examples, traditional methods such as SVMs could not work well on such problems. Thus, we propose a semi-supervised learning method, i.e., Laplacian Support Vector Machine (LapSVM) for recognizing miRNA-binding residues in proteins from sequences by making use of both labeled and unlabeled data in this article. A hybrid feature is put forward for coding instances which incorporates evolutionary information of the amino acid sequence and mutual interaction propensities in protein-miRNA complex structures. The results indicate that the LapSVM model receives good performance with a F1 score of 22.06±0.28% and an AUC (area under the ROC curve) value of 0.760±0.043. A web server called MBindR is built and freely available at http:// cbi.njupt.edu.cn/MBindR/MBindR.htm for academic usage.
基于混合特征的拉普拉斯支持向量机识别蛋白质序列中的microrna结合位点
对蛋白质中microRNA (miRNA)结合残基的识别将进一步增强我们对miRNA如何沉默其靶基因和一些相关生物学过程的理解。由于标记样例不足,支持向量机等传统方法不能很好地解决这类问题。因此,我们提出了一种半监督学习方法,即拉普拉斯支持向量机(LapSVM),用于利用标记和未标记数据从序列中识别蛋白质中的mirna结合残基。提出了蛋白质- mirna复合体结构中包含氨基酸序列进化信息和相互作用倾向的编码实例的杂交特征。结果表明,LapSVM模型的F1得分为22.06±0.28%,AUC (ROC曲线下面积)值为0.760±0.043,具有较好的性能。一个名为MBindR的web服务器已经建立,并可在http:// cbi.njupt.edu.cn/MBindR/MBindR.htm免费获得,供学术使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信