In-Memory Memristive Transformation Stage of Gaussian Random Number Generator

Xuening Dong, A. Amirsoleimani, M. Azghadi, R. Genov
{"title":"In-Memory Memristive Transformation Stage of Gaussian Random Number Generator","authors":"Xuening Dong, A. Amirsoleimani, M. Azghadi, R. Genov","doi":"10.1109/COINS54846.2022.9855007","DOIUrl":null,"url":null,"abstract":"In this work, we present a modification to the digital Wallace-based Gaussian Random Number Generator (GRNG) by implementing an in-memory memristive dot-product engine in place of the vector-matrix multiplication (VMM) stage. The dot-product engine provides an analog interface to the GRNG with statistical robustness and better resource efficiency. One modification with three different structures is proposed and evaluated by the statistical test pass rates and benchmarked against the digital implementations. The best-proposed modification achieved a 95.8% test pass rate for 100 iterative small pool generation while requiring 23.6% and 44.4% less power and area consumption.","PeriodicalId":187055,"journal":{"name":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS54846.2022.9855007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we present a modification to the digital Wallace-based Gaussian Random Number Generator (GRNG) by implementing an in-memory memristive dot-product engine in place of the vector-matrix multiplication (VMM) stage. The dot-product engine provides an analog interface to the GRNG with statistical robustness and better resource efficiency. One modification with three different structures is proposed and evaluated by the statistical test pass rates and benchmarked against the digital implementations. The best-proposed modification achieved a 95.8% test pass rate for 100 iterative small pool generation while requiring 23.6% and 44.4% less power and area consumption.
高斯随机数发生器的内存记忆变换阶段
在这项工作中,我们提出了一种基于华莱士的数字高斯随机数生成器(GRNG)的修改,通过实现内存中的记忆点积引擎来代替向量矩阵乘法(VMM)阶段。点积引擎为GRNG提供了一个具有统计鲁棒性和更好的资源效率的模拟接口。提出了三种不同结构的一种修改,并通过统计测试通过率进行了评估,并对数字实现进行了基准测试。提出的最佳修改方案实现了100次迭代小池发电95.8%的测试通过率,功耗和面积消耗分别减少23.6%和44.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信