Video Surveillance Shoplifting Recognition Based on a Hybrid Neural Network

Lyudmyla Kirichenko, Bohdan Sydorenko, T. Radivilova, Petro Zinchenko
{"title":"Video Surveillance Shoplifting Recognition Based on a Hybrid Neural Network","authors":"Lyudmyla Kirichenko, Bohdan Sydorenko, T. Radivilova, Petro Zinchenko","doi":"10.1109/CSIT56902.2022.10000545","DOIUrl":null,"url":null,"abstract":"Understanding dynamic human behavior based on online video has many applications in security control, crime surveillance, sports, and industrial IoT systems. This paper solves the problem of classifying video data recorded on surveillance cameras in order to identify fragments with instances of shoplifting. It is proposed to use a classifier that is a symbiosis of two neural networks: convolutional and recurrent. The convolutional neural network is used for extraction of features from each frame of the video fragment, and the recurrent network for processing the temporal sequence of processed frames and subsequent classification.","PeriodicalId":282561,"journal":{"name":"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIT56902.2022.10000545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding dynamic human behavior based on online video has many applications in security control, crime surveillance, sports, and industrial IoT systems. This paper solves the problem of classifying video data recorded on surveillance cameras in order to identify fragments with instances of shoplifting. It is proposed to use a classifier that is a symbiosis of two neural networks: convolutional and recurrent. The convolutional neural network is used for extraction of features from each frame of the video fragment, and the recurrent network for processing the temporal sequence of processed frames and subsequent classification.
基于混合神经网络的视频监控入店行窃识别
基于在线视频了解动态人类行为在安全控制、犯罪监控、体育和工业物联网系统中有许多应用。本文解决了监控录像数据的分类问题,以识别带有入店行窃实例的片段。我们建议使用卷积和循环两种神经网络共生的分类器。卷积神经网络用于从视频片段的每一帧中提取特征,循环网络用于处理处理后的帧的时间序列并进行后续分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信