GaborNet: Gabor filters with learnable parameters in deep convolutional neural network

Andrey Sergeevich Alekseev, Anatoly Bobe
{"title":"GaborNet: Gabor filters with learnable parameters in deep convolutional neural network","authors":"Andrey Sergeevich Alekseev, Anatoly Bobe","doi":"10.1109/EnT47717.2019.9030571","DOIUrl":null,"url":null,"abstract":"The article describes a system for image recognition using deep convolutional neural networks. Modified network architecture is proposed that focuses on improving convergence and reducing training complexity. The filters in the first layer of the network are constrained to fit the Gabor function. The parameters of Gabor functions are learnable and are updated by standard backpropagation techniques. The system was implemented on Python, tested on several datasets and outperformed the common convolutional networks.","PeriodicalId":288550,"journal":{"name":"2019 International Conference on Engineering and Telecommunication (EnT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Engineering and Telecommunication (EnT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT47717.2019.9030571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

The article describes a system for image recognition using deep convolutional neural networks. Modified network architecture is proposed that focuses on improving convergence and reducing training complexity. The filters in the first layer of the network are constrained to fit the Gabor function. The parameters of Gabor functions are learnable and are updated by standard backpropagation techniques. The system was implemented on Python, tested on several datasets and outperformed the common convolutional networks.
深度卷积神经网络中具有可学习参数的Gabor滤波器
本文介绍了一种基于深度卷积神经网络的图像识别系统。提出了改进的网络结构,以提高收敛性和降低训练复杂度为重点。网络第一层的滤波器被约束以拟合Gabor函数。Gabor函数的参数是可学习的,并通过标准的反向传播技术进行更新。该系统在Python上实现,在多个数据集上进行了测试,并优于常见的卷积网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信