Short-term imputation of missing sound level data using selected computational intelligence methods

M. Kekez, L. Radziszewski, A. Ba̧kowski, D. Kurczyński
{"title":"Short-term imputation of missing sound level data using selected computational intelligence methods","authors":"M. Kekez, L. Radziszewski, A. Ba̧kowski, D. Kurczyński","doi":"10.1109/AUTOMOTIVESAFETY47494.2020.9293530","DOIUrl":null,"url":null,"abstract":"The aim of the paper was to impute for the shortterm missing sound level data in the noise monitoring stations by applying the models which describe variability of sound level within the tested period. To build the model, the computational intelligence methods, like neural networks, fuzzy systems, or regression trees can be used. The latter approach was applied to build the models with the aid of Cubist regression tree and Random Forest regression software, using recorded equivalent sound levels.","PeriodicalId":192816,"journal":{"name":"2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTOMOTIVESAFETY47494.2020.9293530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the paper was to impute for the shortterm missing sound level data in the noise monitoring stations by applying the models which describe variability of sound level within the tested period. To build the model, the computational intelligence methods, like neural networks, fuzzy systems, or regression trees can be used. The latter approach was applied to build the models with the aid of Cubist regression tree and Random Forest regression software, using recorded equivalent sound levels.
使用选定的计算智能方法对缺失的声级数据进行短期的代入
本文的目的是应用声级变化模型对噪声监测站短期缺失的声级数据进行估算。为了建立模型,可以使用计算智能方法,如神经网络,模糊系统或回归树。后一种方法在立体派回归树和随机森林回归软件的帮助下建立模型,使用记录的等效声级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信