{"title":"Using Photoplethysmography for Simple Hand Gesture Recognition","authors":"Karthik Subramanian, Celal Savur, F. Sahin","doi":"10.1109/SoSE50414.2020.9130489","DOIUrl":null,"url":null,"abstract":"A new wearable band is developed which uses three Photoplethysmography (PPG) sensors for the purpose of hand gesture recognition (HGR). These sensors are typically used for heart rate estimation and detection of cardiovascular diseases. Heart rate estimates obtained from these sensors are disregarded when the arm is in motion on account of artifacts. This research suggests and demonstrates that these artifacts are repeatable in nature based on the gestures performed. A comparative study is made between the developed band and the Myo Armband which uses surface-Electromyography (s-EMG) for gesture recognition. Based on the results of this paper which employs supervised machine learning techniques, it can be seen that PPG can be utilized as a viable alternative modality for gesture recognition applications.","PeriodicalId":121664,"journal":{"name":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoSE50414.2020.9130489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A new wearable band is developed which uses three Photoplethysmography (PPG) sensors for the purpose of hand gesture recognition (HGR). These sensors are typically used for heart rate estimation and detection of cardiovascular diseases. Heart rate estimates obtained from these sensors are disregarded when the arm is in motion on account of artifacts. This research suggests and demonstrates that these artifacts are repeatable in nature based on the gestures performed. A comparative study is made between the developed band and the Myo Armband which uses surface-Electromyography (s-EMG) for gesture recognition. Based on the results of this paper which employs supervised machine learning techniques, it can be seen that PPG can be utilized as a viable alternative modality for gesture recognition applications.