Srikrishna Iyer, Jingyao Zhang, Yaling Yang, P. Schaumont
{"title":"A unifying interface abstraction for accelerated computing in sensor nodes","authors":"Srikrishna Iyer, Jingyao Zhang, Yaling Yang, P. Schaumont","doi":"10.1109/ESLSYN.2011.5952296","DOIUrl":null,"url":null,"abstract":"Hardware-software co-design techniques are very suitable to develop the next generation of sensornet applications, which have high computational demands. By making use of a low-power FPGA, the peak computational performance of a sensor node can be improved without significant degradation of the standby power dissipation. In this contribution, we present a methodology and tool to enable hardware/software codesign for sensor node application development. We present the integration of nesC, a sensornet programming language, with GEZEL, an easy-to-use hardware description language. We describe the hardware/software interface at different levels of abstraction: at the level of the design language, at the level of the co-simulator, and in the hardware implementation. We use a layered, uniform approach that is particularly suited to deal with the heterogeneous interfaces typically found on small embedded processors. We illustrate the strengths of our approach by means of a prototype application: the integration of a hardware-accelerated crypto-application in a nesC application.","PeriodicalId":253939,"journal":{"name":"2011 Electronic System Level Synthesis Conference (ESLsyn)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Electronic System Level Synthesis Conference (ESLsyn)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESLSYN.2011.5952296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Hardware-software co-design techniques are very suitable to develop the next generation of sensornet applications, which have high computational demands. By making use of a low-power FPGA, the peak computational performance of a sensor node can be improved without significant degradation of the standby power dissipation. In this contribution, we present a methodology and tool to enable hardware/software codesign for sensor node application development. We present the integration of nesC, a sensornet programming language, with GEZEL, an easy-to-use hardware description language. We describe the hardware/software interface at different levels of abstraction: at the level of the design language, at the level of the co-simulator, and in the hardware implementation. We use a layered, uniform approach that is particularly suited to deal with the heterogeneous interfaces typically found on small embedded processors. We illustrate the strengths of our approach by means of a prototype application: the integration of a hardware-accelerated crypto-application in a nesC application.