Chaos-based image assessment for THz imagery

Erik Blasch, Jianbo Gao, W. Tung
{"title":"Chaos-based image assessment for THz imagery","authors":"Erik Blasch, Jianbo Gao, W. Tung","doi":"10.1109/ISSPA.2012.6310576","DOIUrl":null,"url":null,"abstract":"Multiscale image processing is a powerful technique that can determine image characteristics (e.g. clutter), provide denoising, and determine object features. Imagery is highly nonstationary (i.e. mean and variance change with location and time) and multiscaled (i.e. dependent on the spatial or temporal interval lengths). In this paper, we utilize the scale-dependent Lyapunov exponent (SDLE), which unifies the principles of fractal and chaos theory, to characterize the different signal behaviors on a wide range of scales simultaneously. Commonly used complexity measures, including those from information theory, chaos theory, and random fractal theory, can all be related to the values of the SDLE at specific scales, and therefore, SDLE can act as the basis for a unified theory of multiscale analysis of complex imagery data. We describe the power-law and singular-value decomposition (SVD) for image processing and demonstrate a SDLE example using TeraHertz (THz) imagery for concealed target image fusion.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Multiscale image processing is a powerful technique that can determine image characteristics (e.g. clutter), provide denoising, and determine object features. Imagery is highly nonstationary (i.e. mean and variance change with location and time) and multiscaled (i.e. dependent on the spatial or temporal interval lengths). In this paper, we utilize the scale-dependent Lyapunov exponent (SDLE), which unifies the principles of fractal and chaos theory, to characterize the different signal behaviors on a wide range of scales simultaneously. Commonly used complexity measures, including those from information theory, chaos theory, and random fractal theory, can all be related to the values of the SDLE at specific scales, and therefore, SDLE can act as the basis for a unified theory of multiscale analysis of complex imagery data. We describe the power-law and singular-value decomposition (SVD) for image processing and demonstrate a SDLE example using TeraHertz (THz) imagery for concealed target image fusion.
基于混沌的太赫兹图像评估
多尺度图像处理是一种强大的技术,可以确定图像特征(如杂波),提供去噪和确定目标特征。图像是非平稳的(即平均值和方差随位置和时间变化)和多尺度的(即依赖于空间或时间间隔长度)。结合分形理论和混沌理论的原理,利用尺度相关的李雅普诺夫指数(SDLE)来同时表征信号在大尺度上的不同行为。常用的复杂性度量,包括信息论、混沌理论和随机分形理论,都可以与特定尺度下SDLE的值相关联,因此SDLE可以作为复杂图像数据多尺度分析的统一理论基础。我们描述了幂律和奇异值分解(SVD)用于图像处理,并演示了一个使用太赫兹(THz)图像进行隐藏目标图像融合的SDLE示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信