An unprotected RISC-V Soft-core processor on an SRAM FPGA: Is it as bad as it sounds?

Bruno E. Forlin, Wouter van Huffelen, C. Cazzaniga, P. Rech, Nikolaos S. Alachiotis, M. Ottavi
{"title":"An unprotected RISC-V Soft-core processor on an SRAM FPGA: Is it as bad as it sounds?","authors":"Bruno E. Forlin, Wouter van Huffelen, C. Cazzaniga, P. Rech, Nikolaos S. Alachiotis, M. Ottavi","doi":"10.1109/ETS56758.2023.10174076","DOIUrl":null,"url":null,"abstract":"Fast development, low cost, and reconfigurability are becoming critical factors for aerospace applications, making SRAM FPGAs attractive. However, SRAM FPGAs are prone to errors in the user and on the configuration bits. For their correct functioning, they must be capable of withstanding failures without sacrificing much performance. When adjusting a soft core for these applications, it is essential to know where redundancies are necessary, to avoid unnecessary overhead. We characterize the reliability of an unprotected RISC-V microcontroller using an accelerated neutron beam. Our investigation shows that, for our chosen benchmark and processor, the user data in the memory banks is the leading cause of the total number of errors in the application. By reversing the benchmark operations, we could root cause the origin of the observed errors and found that most of the data corruption detected during the runs stem from previously corrupt input data or from output data that were corrupted while transmitting.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fast development, low cost, and reconfigurability are becoming critical factors for aerospace applications, making SRAM FPGAs attractive. However, SRAM FPGAs are prone to errors in the user and on the configuration bits. For their correct functioning, they must be capable of withstanding failures without sacrificing much performance. When adjusting a soft core for these applications, it is essential to know where redundancies are necessary, to avoid unnecessary overhead. We characterize the reliability of an unprotected RISC-V microcontroller using an accelerated neutron beam. Our investigation shows that, for our chosen benchmark and processor, the user data in the memory banks is the leading cause of the total number of errors in the application. By reversing the benchmark operations, we could root cause the origin of the observed errors and found that most of the data corruption detected during the runs stem from previously corrupt input data or from output data that were corrupted while transmitting.
SRAM FPGA上无保护的RISC-V软核处理器:真的像听起来那么糟糕吗?
快速发展、低成本和可重构性正成为航空航天应用的关键因素,使SRAM fpga具有吸引力。然而,SRAM fpga容易在用户位和配置位上出错。为了使其正常工作,它们必须能够承受故障而不牺牲太多性能。在为这些应用程序调整软核时,必须知道哪里需要冗余,以避免不必要的开销。我们使用加速中子束表征无保护的RISC-V微控制器的可靠性。我们的调查表明,对于我们选择的基准和处理器,内存库中的用户数据是导致应用程序中错误总数的主要原因。通过逆转基准测试操作,我们可以找出观察到的错误的根源,并发现在运行期间检测到的大多数数据损坏源于先前损坏的输入数据或在传输过程中损坏的输出数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信