Multi-codebook Fuzzy Neural Network Using Incremental Learning for Multimodal Data Classification

M. A. Ma'sum, W. Jatmiko
{"title":"Multi-codebook Fuzzy Neural Network Using Incremental Learning for Multimodal Data Classification","authors":"M. A. Ma'sum, W. Jatmiko","doi":"10.1109/ACIRS.2019.8935971","DOIUrl":null,"url":null,"abstract":"One of the challenge in classification is classification in multimodal data. This paper proposed multi-codebook fuzzy neural network by using incremental learning for multimodal data classification. There are 2 variations of the proposed method, one uses a static threshold, and the other uses a dynamic threshold. Based on the experiment result, the multicodebook FNGLVQ using dynamic incremental learning has the highest improvement compared to the original FNGLVQ. It achieves 15.65% margin in synthetic dataset, 5.02 % margin in benchmark dataset, and 11.30% on average all dataset.","PeriodicalId":338050,"journal":{"name":"2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIRS.2019.8935971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the challenge in classification is classification in multimodal data. This paper proposed multi-codebook fuzzy neural network by using incremental learning for multimodal data classification. There are 2 variations of the proposed method, one uses a static threshold, and the other uses a dynamic threshold. Based on the experiment result, the multicodebook FNGLVQ using dynamic incremental learning has the highest improvement compared to the original FNGLVQ. It achieves 15.65% margin in synthetic dataset, 5.02 % margin in benchmark dataset, and 11.30% on average all dataset.
基于增量学习的多码本模糊神经网络多模态数据分类
多模态数据的分类是分类的难点之一。本文提出了一种基于增量学习的多码本模糊神经网络,用于多模态数据分类。提出的方法有两种变体,一种使用静态阈值,另一种使用动态阈值。实验结果表明,采用动态增量学习的多码本FNGLVQ比原始的FNGLVQ有最高的改进。在合成数据集上达到15.65%的边际,在基准数据集上达到5.02%的边际,在所有数据集上平均达到11.30%的边际。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信