Yi-Wei Lin, M. Marek-Sadowska, W. Maly, A. Pfitzner, D. Kasprowicz
{"title":"Is there always performance overhead for regular fabric?","authors":"Yi-Wei Lin, M. Marek-Sadowska, W. Maly, A. Pfitzner, D. Kasprowicz","doi":"10.1109/ICCD.2008.4751916","DOIUrl":null,"url":null,"abstract":"In this paper, we study the circuits built from super-regular, high-density transistor arrays that can be prefabricated and customized using an OPC-free interconnect manufacturing process. The super-regular layout style greatly enhances the chippsilas manufacturability. Unlike other regular fabrics that sacrifice area and performance to improve regularity, the new layout style, combined with a new 3-D geometry transistor, enables to produce circuits with timing and power density comparable to or better than that of conventional CMOS circuits and using less chip area.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
In this paper, we study the circuits built from super-regular, high-density transistor arrays that can be prefabricated and customized using an OPC-free interconnect manufacturing process. The super-regular layout style greatly enhances the chippsilas manufacturability. Unlike other regular fabrics that sacrifice area and performance to improve regularity, the new layout style, combined with a new 3-D geometry transistor, enables to produce circuits with timing and power density comparable to or better than that of conventional CMOS circuits and using less chip area.