Decision tree generation for decoding irregular instructions

Katsumi Okuda, Haruhiko Takeyama
{"title":"Decision tree generation for decoding irregular instructions","authors":"Katsumi Okuda, Haruhiko Takeyama","doi":"10.3850/9783981537079_0066","DOIUrl":null,"url":null,"abstract":"Instruction set simulators (ISS) are indispensable tools for the development of new architectures and embedded software. One essential part of any ISS is its instruction decoder. Since manual implementation of an instruction decoder for a complex instruction set is tedious and error-prone, automatic generation of an instruction decoder is required. However, as a result of the increasing irregularity of instruction encoding because of the incremental addition of instructions, generating efficient instruction decoders is complicated. In this paper, we propose a generation algorithm of a decision tree for decoding irregular instructions. Our algorithm can generate decision trees by using not only significant bits of opcode patterns but also exclusion conditions in decoding entries. Our results on ARMv7, Thumb-2, MIPS64, RH850, and TriCore show that our algorithm generates efficient instruction decoders in terms of both depth and memory consumption regardless of whether the target instruction set is irregular or not.","PeriodicalId":311352,"journal":{"name":"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3850/9783981537079_0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Instruction set simulators (ISS) are indispensable tools for the development of new architectures and embedded software. One essential part of any ISS is its instruction decoder. Since manual implementation of an instruction decoder for a complex instruction set is tedious and error-prone, automatic generation of an instruction decoder is required. However, as a result of the increasing irregularity of instruction encoding because of the incremental addition of instructions, generating efficient instruction decoders is complicated. In this paper, we propose a generation algorithm of a decision tree for decoding irregular instructions. Our algorithm can generate decision trees by using not only significant bits of opcode patterns but also exclusion conditions in decoding entries. Our results on ARMv7, Thumb-2, MIPS64, RH850, and TriCore show that our algorithm generates efficient instruction decoders in terms of both depth and memory consumption regardless of whether the target instruction set is irregular or not.
解码不规则指令的决策树生成
指令集模拟器(ISS)是开发新架构和嵌入式软件不可或缺的工具。任何国际空间站的一个重要组成部分是它的指令解码器。由于手动实现复杂指令集的指令解码器是繁琐且容易出错的,因此需要自动生成指令解码器。然而,由于指令的增量增加导致指令编码的不规则性增加,使得生成高效的指令解码器变得复杂。本文提出了一种用于解码不规则指令的决策树生成算法。该算法不仅可以利用操作码模式的有效位,还可以利用解码条目中的排除条件生成决策树。我们在ARMv7、Thumb-2、MIPS64、RH850和TriCore上的结果表明,无论目标指令集是否不规则,我们的算法在深度和内存消耗方面都能生成高效的指令解码器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信