D-band frequency memristor switch based on monolayer boron nitride

Sung Jin Yang, Frank Makal, Paul Peterson, Jason Alikpala, Christopher J. Luth, S. Banerjee, Andreas Roessler, D. Akinwande
{"title":"D-band frequency memristor switch based on monolayer boron nitride","authors":"Sung Jin Yang, Frank Makal, Paul Peterson, Jason Alikpala, Christopher J. Luth, S. Banerjee, Andreas Roessler, D. Akinwande","doi":"10.1109/drc55272.2022.9855801","DOIUrl":null,"url":null,"abstract":"The radiofrequency (RF) switching network system has emerged as an essential future technology in the sixth generation (6G) wireless communications. Many scientists have put a great deal of effort into researching and developing 6G antennas, RF front ends, and wave propagation characterization. However, the conventional RF switches are based on solid-state diode and transistor devices. These volatile solid-state switches cause high energy consumption because they consume both dynamic (during switching) and static (in the idle state) power [1]. Here, we proposed a radiofrequency (RF) switch based on the non-volatile resistive switching (NVRS) memory effects in h-BN [2], [3]. The non-volatile h-BN RF switches consume zero static power and are more energy-efficient than the conventional ones. Specifically, this work demonstrates the switches operating in the D-band (110 – 170 GHz) for the first time, which was absent in the prior reports [4], [5].","PeriodicalId":200504,"journal":{"name":"2022 Device Research Conference (DRC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/drc55272.2022.9855801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The radiofrequency (RF) switching network system has emerged as an essential future technology in the sixth generation (6G) wireless communications. Many scientists have put a great deal of effort into researching and developing 6G antennas, RF front ends, and wave propagation characterization. However, the conventional RF switches are based on solid-state diode and transistor devices. These volatile solid-state switches cause high energy consumption because they consume both dynamic (during switching) and static (in the idle state) power [1]. Here, we proposed a radiofrequency (RF) switch based on the non-volatile resistive switching (NVRS) memory effects in h-BN [2], [3]. The non-volatile h-BN RF switches consume zero static power and are more energy-efficient than the conventional ones. Specifically, this work demonstrates the switches operating in the D-band (110 – 170 GHz) for the first time, which was absent in the prior reports [4], [5].
基于单层氮化硼的d波段频率忆阻开关
射频(RF)交换网络系统已成为第六代(6G)无线通信中必不可少的未来技术。许多科学家在研究和开发6G天线、射频前端和波传播特性方面投入了大量精力。然而,传统的射频开关是基于固态二极管和晶体管器件。这些易失性固态开关由于同时消耗动态(开关过程中)和静态(空闲状态下)功率而导致高能耗[1]。在这里,我们提出了一种基于h-BN非易失性电阻开关(NVRS)记忆效应的射频(RF)开关[2],[3]。非易失性h-BN射频开关的静态功耗为零,比传统开关更节能。具体来说,这项工作首次展示了在d频段(110 - 170 GHz)工作的交换机,这在之前的报道中是没有的[4],[5]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信