Dual-Sum Single-Carry Self-Timed Adder Designs

P. Balasubramanian, D. Edwards
{"title":"Dual-Sum Single-Carry Self-Timed Adder Designs","authors":"P. Balasubramanian, D. Edwards","doi":"10.1109/ISVLSI.2009.13","DOIUrl":null,"url":null,"abstract":"This paper presents designs of self-timed dual-sum single-carry or dual-bit adder function blocks, constructed using commercially available synchronous library resources (standard cells) and validated using synchronous tools. Specifically, the proposed adder modules qualify as either quasi-delay-insensitive or speed-independent and satisfy Seitz’s weak-indication timing constraints. The delay-insensitive version of the ripple carry adder topology has been used to analyze the designs. The indication (completion) is either made implicit in the topology (local indication) or considerably isolated from the actual data path (a new variant of global indication). The proposed adders are found to exhibit improved power and performance parameters, whilst being competitive in terms of area, in comparison with those pertaining to other self-timed logic realizations","PeriodicalId":137508,"journal":{"name":"2009 IEEE Computer Society Annual Symposium on VLSI","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2009.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents designs of self-timed dual-sum single-carry or dual-bit adder function blocks, constructed using commercially available synchronous library resources (standard cells) and validated using synchronous tools. Specifically, the proposed adder modules qualify as either quasi-delay-insensitive or speed-independent and satisfy Seitz’s weak-indication timing constraints. The delay-insensitive version of the ripple carry adder topology has been used to analyze the designs. The indication (completion) is either made implicit in the topology (local indication) or considerably isolated from the actual data path (a new variant of global indication). The proposed adders are found to exhibit improved power and performance parameters, whilst being competitive in terms of area, in comparison with those pertaining to other self-timed logic realizations
双和单进位自计时加法器设计
本文介绍了自定时双和单进位或双位加法器功能块的设计,使用商业上可获得的同步库资源(标准单元)构建并使用同步工具进行验证。具体来说,所提出的加法器模块是准延迟不敏感或速度无关的,并且满足Seitz的弱指示时序约束。采用延迟不敏感版本的纹波进位加法器拓扑来分析设计。指示(补全)要么隐式地出现在拓扑中(局部指示),要么与实际数据路径完全隔离(全局指示的新变体)。与其他自定时逻辑实现相比,所提出的加法器显示出改进的功率和性能参数,同时在面积方面具有竞争力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信