Audio Noise Classification using Bark scale features and K-NN Technique

C. Eamdeelerd, K. Songwatana
{"title":"Audio Noise Classification using Bark scale features and K-NN Technique","authors":"C. Eamdeelerd, K. Songwatana","doi":"10.1109/ISCIT.2008.4700168","DOIUrl":null,"url":null,"abstract":"This paper presents the audio noise classification using Bark scale features and K-NN technique. This paper uses audio noise signal from NOISEX-92 (12 types). We determine the transfer functions from linear predictive coding (LPC) coefficient of noise signal on Bark scale and use K-NN technique to classify them. The results will be used for optimization of speech recognition model in the presence of noise. The highest average accuracy for audio noise classification is obtained when K=3 and median over 5 consecutive frames.","PeriodicalId":215340,"journal":{"name":"2008 International Symposium on Communications and Information Technologies","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Communications and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2008.4700168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents the audio noise classification using Bark scale features and K-NN technique. This paper uses audio noise signal from NOISEX-92 (12 types). We determine the transfer functions from linear predictive coding (LPC) coefficient of noise signal on Bark scale and use K-NN technique to classify them. The results will be used for optimization of speech recognition model in the presence of noise. The highest average accuracy for audio noise classification is obtained when K=3 and median over 5 consecutive frames.
基于树皮尺度特征和K-NN技术的音频噪声分类
本文提出了基于Bark尺度特征和K-NN技术的音频噪声分类方法。本文使用的音频噪声信号来自NOISEX-92(12种)。从噪声信号的线性预测编码(LPC)系数在Bark尺度上确定传递函数,并使用K-NN技术对其进行分类。研究结果将用于噪声环境下语音识别模型的优化。当K=3和中位数超过5个连续帧时,音频噪声分类的平均精度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信