A new O(n log n) scheduling heuristic for parallel decomposition of sparse matrices

R. Telichevesky, P. Agrawal, J. Trotter
{"title":"A new O(n log n) scheduling heuristic for parallel decomposition of sparse matrices","authors":"R. Telichevesky, P. Agrawal, J. Trotter","doi":"10.1109/ICCD.1991.139985","DOIUrl":null,"url":null,"abstract":"The problem of sparse matrix decomposition using distributed memory multiprocessors is addressed. The data partitioning scheme is simple and is based on equalizing the load among the processors. A new O(n log n) task scheduling heuristic with provably deadlock-free properties is presented. The key idea is the ordering of nodes in a task graph that represents the matrix decomposition steps in a levelized manner, based on a new measure, delta the remaining completion time. The method tends to minimize the idle time of processors by revising the overall decomposition schedule by permitting the execution of tasks within these idle periods. For large sparse matrices, the analysis and simulation results show that a multiprocessor with even a small number of processors will exceed the performance of a supercomputer like the Cray X-MP.<<ETX>>","PeriodicalId":239827,"journal":{"name":"[1991 Proceedings] IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1991.139985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The problem of sparse matrix decomposition using distributed memory multiprocessors is addressed. The data partitioning scheme is simple and is based on equalizing the load among the processors. A new O(n log n) task scheduling heuristic with provably deadlock-free properties is presented. The key idea is the ordering of nodes in a task graph that represents the matrix decomposition steps in a levelized manner, based on a new measure, delta the remaining completion time. The method tends to minimize the idle time of processors by revising the overall decomposition schedule by permitting the execution of tasks within these idle periods. For large sparse matrices, the analysis and simulation results show that a multiprocessor with even a small number of processors will exceed the performance of a supercomputer like the Cray X-MP.<>
一种新的O(n log n)调度启发式稀疏矩阵并行分解算法
研究了分布式存储多处理器的稀疏矩阵分解问题。数据分区方案很简单,基于均衡处理器之间的负载。提出了一种新的可证明无死锁的O(n log n)任务调度启发式算法。关键思想是任务图中节点的排序,它基于一个新的度量,即剩余完成时间的增量,以一种均衡的方式表示矩阵分解步骤。该方法倾向于通过允许在这些空闲期间执行任务来修改整个分解计划,从而最小化处理器的空闲时间。对于大型稀疏矩阵,分析和仿真结果表明,即使是少量处理器的多处理器也将超过像Cray X-MP.>这样的超级计算机的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信