Shape optimizations of metallic sheets using a multigrid approach

A. Altınoklu, Geokhan Karaova, Ö. Ergül
{"title":"Shape optimizations of metallic sheets using a multigrid approach","authors":"A. Altınoklu, Geokhan Karaova, Ö. Ergül","doi":"10.1109/EMCT.2017.8090369","DOIUrl":null,"url":null,"abstract":"We present a novel multigrid approach for the shape optimizations of corrugated metallic sheets by using genetic algorithms (GAs) and the multilevel fast multipole algorithm (MLFMA). The overall mechanism is obtained by an efficient integration of GAs and MLFMA, while the optimizations are improved by applying multiple grids at different layers. We show that the multigrid approach provides more effective optimizations than the conventional no-grid optimizations that employ the discretization nodes directly. The multigrid optimizations become useful especially as the problem size grows and no-grid optimizations demonstrate poor performances.","PeriodicalId":104929,"journal":{"name":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","volume":"395 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCT.2017.8090369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel multigrid approach for the shape optimizations of corrugated metallic sheets by using genetic algorithms (GAs) and the multilevel fast multipole algorithm (MLFMA). The overall mechanism is obtained by an efficient integration of GAs and MLFMA, while the optimizations are improved by applying multiple grids at different layers. We show that the multigrid approach provides more effective optimizations than the conventional no-grid optimizations that employ the discretization nodes directly. The multigrid optimizations become useful especially as the problem size grows and no-grid optimizations demonstrate poor performances.
用多网格方法优化金属薄板的形状
提出了一种基于遗传算法和多层快速多极算法的金属波纹板形状优化方法。通过将遗传算法和MLFMA有效结合,获得了整体机制,并通过在不同层上应用多个网格,提高了优化效果。我们表明,与直接使用离散化节点的传统无网格优化相比,多重网格方法提供了更有效的优化。多网格优化在问题规模增长和无网格优化表现出较差的性能时尤其有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信