Accelerators for biologically-inspired attention and recognition

Mi Sun Park, Chuanjun Zhang, M. DeBole, S. Kestur
{"title":"Accelerators for biologically-inspired attention and recognition","authors":"Mi Sun Park, Chuanjun Zhang, M. DeBole, S. Kestur","doi":"10.1145/2463209.2488900","DOIUrl":null,"url":null,"abstract":"Video and image content has begun to play a growing role in many applications, ranging from video games to autonomous self-driving vehicles. In this paper, we present accelerators for gist-based scene recognition, saliency-based attention, and HMAX-based object recognition that have multiple uses and are based on the current understanding of the vision systems found in the visual cortex of the mammalian brain. By integrating them into a two-level hierarchical system, we improve recognition accuracy and reduce computational time. Results of our accelerator prototype on a multi-FPGA system show real-time performance and high recognition accuracy with large speedups over existing CPU, GPU and FPGA implementations.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Video and image content has begun to play a growing role in many applications, ranging from video games to autonomous self-driving vehicles. In this paper, we present accelerators for gist-based scene recognition, saliency-based attention, and HMAX-based object recognition that have multiple uses and are based on the current understanding of the vision systems found in the visual cortex of the mammalian brain. By integrating them into a two-level hierarchical system, we improve recognition accuracy and reduce computational time. Results of our accelerator prototype on a multi-FPGA system show real-time performance and high recognition accuracy with large speedups over existing CPU, GPU and FPGA implementations.
生物激发注意力和认知的加速器
视频和图像内容已经开始在许多应用中发挥越来越大的作用,从视频游戏到自动驾驶汽车。在本文中,我们提出了基于列表的场景识别、基于显著性的注意力和基于hmax的物体识别的加速器,这些加速器具有多种用途,并且基于当前对哺乳动物大脑视觉皮层中视觉系统的理解。通过将它们集成到一个两级层次系统中,我们提高了识别精度并减少了计算时间。我们的加速器原型在多FPGA系统上的结果表明,与现有的CPU、GPU和FPGA实现相比,该系统具有实时性和较高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信