{"title":"Calculation of electron impact ionization co-efficient in β-Ga2O3","authors":"Krishnendu Ghosh, U. Singisetti","doi":"10.1109/DRC.2014.6872302","DOIUrl":null,"url":null,"abstract":"Monoclinic β-Ga2O3 field effect transistors (FETs) have been recently explored for power electronics application [1, 2] due to its large bandgap, and the availability of native substrates. Quantitative impact ionization coefficient (α) values are required to accurately predict the achievable breakdown voltages in these devices. Here, we first report the theoretical calculation of the electron impact ionization co-efficient in β-Ga2O3 by numerically evaluating the electron distribution function at high electric fields using Baraff's method [3]. We have included acoustic deformation potential (ADP) scattering, impurity scattering (IS), polar optical phonon (POP) scattering, and impact ionization (II) scattering in our calculations. Non-polar optical phonons are found to have negligible effects. Cheynoweth exponential fit of the impact ionization coefficient is extracted that can be used in device simulators to optimize the device design for high breakdown voltages.","PeriodicalId":293780,"journal":{"name":"72nd Device Research Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"72nd Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2014.6872302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Monoclinic β-Ga2O3 field effect transistors (FETs) have been recently explored for power electronics application [1, 2] due to its large bandgap, and the availability of native substrates. Quantitative impact ionization coefficient (α) values are required to accurately predict the achievable breakdown voltages in these devices. Here, we first report the theoretical calculation of the electron impact ionization co-efficient in β-Ga2O3 by numerically evaluating the electron distribution function at high electric fields using Baraff's method [3]. We have included acoustic deformation potential (ADP) scattering, impurity scattering (IS), polar optical phonon (POP) scattering, and impact ionization (II) scattering in our calculations. Non-polar optical phonons are found to have negligible effects. Cheynoweth exponential fit of the impact ionization coefficient is extracted that can be used in device simulators to optimize the device design for high breakdown voltages.