Impact of window size on the generalizability of collaboration quality estimation models developed using Multimodal Learning Analytics

Pankaj Chejara, L. Prieto, M. Rodríguez-Triana, Adolfo Ruiz-Calleja, M. Khalil
{"title":"Impact of window size on the generalizability of collaboration quality estimation models developed using Multimodal Learning Analytics","authors":"Pankaj Chejara, L. Prieto, M. Rodríguez-Triana, Adolfo Ruiz-Calleja, M. Khalil","doi":"10.1145/3576050.3576143","DOIUrl":null,"url":null,"abstract":"Multimodal Learning Analytics (MMLA) has been applied to collaborative learning, often to estimate collaboration quality with the use of multimodal data, which often have uneven time scales. The difference in time scales is usually handled by dividing and aggregating data using a fixed-size time window. So far, the current MMLA research lacks a systematic exploration of whether and how much window size affects the generalizability of collaboration quality estimation models. In this paper, we investigate the impact of different window sizes (e.g., 30 seconds, 60s, 90s, 120s, 180s, 240s) on the generalizability of classification models for collaboration quality and its underlying dimensions (e.g., argumentation). Our results from an MMLA study involving the use of audio and log data showed that a 60 seconds window size enabled the development of more generalizable models for collaboration quality (AUC 61%) and argumentation (AUC 64%). In contrast, for modeling dimensions focusing on coordination, interpersonal relationship, and joint information processing, a window size of 180 seconds led to better performance in terms of across-context generalizability (on average from 56% AUC to 63% AUC). These findings have implications for the eventual application of MMLA in authentic practice.","PeriodicalId":394433,"journal":{"name":"LAK23: 13th International Learning Analytics and Knowledge Conference","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK23: 13th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3576050.3576143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multimodal Learning Analytics (MMLA) has been applied to collaborative learning, often to estimate collaboration quality with the use of multimodal data, which often have uneven time scales. The difference in time scales is usually handled by dividing and aggregating data using a fixed-size time window. So far, the current MMLA research lacks a systematic exploration of whether and how much window size affects the generalizability of collaboration quality estimation models. In this paper, we investigate the impact of different window sizes (e.g., 30 seconds, 60s, 90s, 120s, 180s, 240s) on the generalizability of classification models for collaboration quality and its underlying dimensions (e.g., argumentation). Our results from an MMLA study involving the use of audio and log data showed that a 60 seconds window size enabled the development of more generalizable models for collaboration quality (AUC 61%) and argumentation (AUC 64%). In contrast, for modeling dimensions focusing on coordination, interpersonal relationship, and joint information processing, a window size of 180 seconds led to better performance in terms of across-context generalizability (on average from 56% AUC to 63% AUC). These findings have implications for the eventual application of MMLA in authentic practice.
窗口大小对使用多模态学习分析开发的协作质量估计模型的通用性的影响
多模态学习分析(MMLA)已被应用于协作学习,通常使用多模态数据来评估协作质量,这些数据通常具有不均匀的时间尺度。时间尺度的差异通常通过使用固定大小的时间窗口分割和聚合数据来处理。到目前为止,目前的MMLA研究缺乏对窗口大小是否以及在多大程度上影响协作质量估计模型的泛化性的系统探索。在本文中,我们研究了不同窗口大小(例如30秒、60秒、90秒、120秒、180秒、240秒)对协作质量分类模型的可泛化性及其潜在维度(例如论证)的影响。我们的MMLA研究结果包括音频和日志数据的使用,结果表明,60秒的窗口大小能够开发出更通用的协作质量(AUC 61%)和论证(AUC 64%)模型。相比之下,对于关注协调、人际关系和联合信息处理的建模维度,180秒的窗口大小在跨上下文泛化方面表现更好(平均从56%的AUC提高到63%的AUC)。这些发现对MMLA在真实实践中的最终应用具有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信