Mining the bilinear structure of data with approximate joint diagonalization

Louis Korczowski, Florent Bouchard, C. Jutten, M. Congedo
{"title":"Mining the bilinear structure of data with approximate joint diagonalization","authors":"Louis Korczowski, Florent Bouchard, C. Jutten, M. Congedo","doi":"10.1109/EUSIPCO.2016.7760332","DOIUrl":null,"url":null,"abstract":"Approximate Joint Diagonalization of a matrix set can solve the linear Blind Source Separation problem. If the data possesses a bilinear structure, for example a spatio-temporal structure, transformations such as tensor decomposition can be applied. In this paper we show how the linear and bilinear joint diagonalization can be applied for extracting sources according to a composite model where some of the sources have a linear structure and other a bilinear structure. This is the case of Event Related Potentials (ERPs). The proposed model achieves higher performance in term of shape and robustness for the estimation of ERP sources in a Brain Computer Interface experiment.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Approximate Joint Diagonalization of a matrix set can solve the linear Blind Source Separation problem. If the data possesses a bilinear structure, for example a spatio-temporal structure, transformations such as tensor decomposition can be applied. In this paper we show how the linear and bilinear joint diagonalization can be applied for extracting sources according to a composite model where some of the sources have a linear structure and other a bilinear structure. This is the case of Event Related Potentials (ERPs). The proposed model achieves higher performance in term of shape and robustness for the estimation of ERP sources in a Brain Computer Interface experiment.
用近似联合对角化方法挖掘数据的双线性结构
矩阵集的近似联合对角化可以解决线性盲源分离问题。如果数据具有双线性结构,例如时空结构,则可以应用张量分解等转换。在本文中,我们展示了如何将线性和双线性联合对角化应用于根据一个复合模型提取源,其中一些源具有线性结构而另一些具有双线性结构。这就是事件相关电位(erp)的情况。在脑机接口实验中,该模型在形状和鲁棒性方面都取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信