{"title":"4H-silicon carbide mesfet with 2.8 W/mm rf power density","authors":"J. Palmour, C. Weitzel, K. Nordquist, C. Carter","doi":"10.1109/DRC.1994.1009401","DOIUrl":null,"url":null,"abstract":"Silicon carbide has tremendous potential for high power microwave devices because of its high breakdown electric field (4x106 V/cm), high thermal conductivity (4.9 W/cm-K), high saturated electron drift velocity ( 2 . 0 ~ 107 cm/sec) and low dielectric constant (10.0). The high velocity allows the devices to operate at relatively high frequencies despite the low mobility of S i c . The high breakdown field allows about ten times higher voltages to be applied for a given channel doping, which should allow a much higher output power density to be achieved than with Si or GaAsl . Submicron MESFETs have been previously fabricated in 6H-Sic and have shown desirable microwave performance with RF output powers of about 1 W/mm at 1-2 G H Z ~ ~ ~ . However, another polytype, 4H-SiC, shows even more potential for high power, high frequency operation, because its electron mobility (>550 cm2/V-sec) is about twice that of 6H-Sic. Thus we report the first DC, S-parameter, and output power results obtained with 4H-Sic MESFETs.","PeriodicalId":244069,"journal":{"name":"52nd Annual Device Research Conference","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd Annual Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.1994.1009401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Silicon carbide has tremendous potential for high power microwave devices because of its high breakdown electric field (4x106 V/cm), high thermal conductivity (4.9 W/cm-K), high saturated electron drift velocity ( 2 . 0 ~ 107 cm/sec) and low dielectric constant (10.0). The high velocity allows the devices to operate at relatively high frequencies despite the low mobility of S i c . The high breakdown field allows about ten times higher voltages to be applied for a given channel doping, which should allow a much higher output power density to be achieved than with Si or GaAsl . Submicron MESFETs have been previously fabricated in 6H-Sic and have shown desirable microwave performance with RF output powers of about 1 W/mm at 1-2 G H Z ~ ~ ~ . However, another polytype, 4H-SiC, shows even more potential for high power, high frequency operation, because its electron mobility (>550 cm2/V-sec) is about twice that of 6H-Sic. Thus we report the first DC, S-parameter, and output power results obtained with 4H-Sic MESFETs.