Attention Based Stack ResNet for Citywide Traffic Accident Prediction

Zhengyang Zhou
{"title":"Attention Based Stack ResNet for Citywide Traffic Accident Prediction","authors":"Zhengyang Zhou","doi":"10.1109/MDM.2019.00-27","DOIUrl":null,"url":null,"abstract":"The fine-grained citywide traffic accident prediction is of great significance for urban traffic management. Existing approaches mainly apply classic machine learning methods based on historical accident records. Thus they failed to involve the cross-domain data, which contains spatial and temporal dependency. Recently, with more cross-domain urban data available, leveraging the cross-domain data by deep learning algorithms to predict fine-grained accidents becomes possible, we propose an attention based ResNet framework to model the sophisticated correlation between urban data.","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The fine-grained citywide traffic accident prediction is of great significance for urban traffic management. Existing approaches mainly apply classic machine learning methods based on historical accident records. Thus they failed to involve the cross-domain data, which contains spatial and temporal dependency. Recently, with more cross-domain urban data available, leveraging the cross-domain data by deep learning algorithms to predict fine-grained accidents becomes possible, we propose an attention based ResNet framework to model the sophisticated correlation between urban data.
基于注意力的城市交通事故预测堆栈ResNet
细粒度的城市交通事故预测对城市交通管理具有重要意义。现有的方法主要是基于历史事故记录的经典机器学习方法。因此,他们没有涉及跨域数据,其中包含空间和时间依赖性。最近,随着越来越多的跨域城市数据可用,利用深度学习算法预测细粒度事故的跨域数据成为可能,我们提出了一个基于注意力的ResNet框架来建模城市数据之间的复杂相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信