Analysis of Different Pre-Processing Techniques to the Development of Machine Learning Predictors with Gene Expression Profiles

Ian Durán, Roberto Leandro, J. Guevara-Coto
{"title":"Analysis of Different Pre-Processing Techniques to the Development of Machine Learning Predictors with Gene Expression Profiles","authors":"Ian Durán, Roberto Leandro, J. Guevara-Coto","doi":"10.1109/JoCICI48395.2019.9105145","DOIUrl":null,"url":null,"abstract":"In this ongoing research work we analyzed the impact of several different data pre-processing and normalization methods on the performance of Support Vector Machines (SVM). The pre-processing methods used are: deleting missing values, imputing zeroes, means, medians, modes, K-Nearest Neighbors (KNN), and Predictive Mean Matching (PMM). Each one of these pre-processing methods will be paired with two normalization methods, log2 and Z-Score. After training, the models will be tested using a validation set, derived from the training set, representing an unseen partition dataset. Subsequently performance metrics will be obtained and compared across each of the models for the training performance and the test performance. These comparisons will then be analyzed and interpreted. The aim of our work was to potentially identify the impact of pre-processing approaches on predictor construction to potentially identify a standard method for expression profile analysis using machine learning methods.","PeriodicalId":154731,"journal":{"name":"2019 IV Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IV Jornadas Costarricenses de Investigación en Computación e Informática (JoCICI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JoCICI48395.2019.9105145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this ongoing research work we analyzed the impact of several different data pre-processing and normalization methods on the performance of Support Vector Machines (SVM). The pre-processing methods used are: deleting missing values, imputing zeroes, means, medians, modes, K-Nearest Neighbors (KNN), and Predictive Mean Matching (PMM). Each one of these pre-processing methods will be paired with two normalization methods, log2 and Z-Score. After training, the models will be tested using a validation set, derived from the training set, representing an unseen partition dataset. Subsequently performance metrics will be obtained and compared across each of the models for the training performance and the test performance. These comparisons will then be analyzed and interpreted. The aim of our work was to potentially identify the impact of pre-processing approaches on predictor construction to potentially identify a standard method for expression profile analysis using machine learning methods.
不同预处理技术对开发具有基因表达谱的机器学习预测因子的分析
在这项正在进行的研究中,我们分析了几种不同的数据预处理和归一化方法对支持向量机(SVM)性能的影响。使用的预处理方法有:删除缺失值、输入零、平均值、中位数、模式、k近邻(KNN)和预测均值匹配(PMM)。每一种预处理方法都将与log2和Z-Score两种归一化方法配对。训练后,将使用来自训练集的验证集来测试模型,该验证集表示一个未见过的分区数据集。随后,将获得性能度量,并在训练性能和测试性能的每个模型之间进行比较。然后对这些比较进行分析和解释。我们工作的目的是潜在地确定预处理方法对预测器构建的影响,从而潜在地确定使用机器学习方法进行表达谱分析的标准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信