Persistent localization and life-long mapping in changing environments using the Frequency Map Enhancement

T. Krajník, J. P. Fentanes, Marc Hanheide, T. Duckett
{"title":"Persistent localization and life-long mapping in changing environments using the Frequency Map Enhancement","authors":"T. Krajník, J. P. Fentanes, Marc Hanheide, T. Duckett","doi":"10.1109/IROS.2016.7759671","DOIUrl":null,"url":null,"abstract":"We present a lifelong mapping and localisation system for long-term autonomous operation of mobile robots in changing environments. The core of the system is a spatio-temporal occupancy grid that explicitly represents the persistence and periodicity of the individual cells and can predict the probability of their occupancy in the future. During navigation, our robot builds temporally local maps and integrates then into the global spatio-temporal grid. Through re-observation of the same locations, the spatio-temporal grid learns the long-term environment dynamics and gains the ability to predict the future environment states. This predictive ability allows to generate time-specific 2d maps used by the robot's localisation and planning modules. By analysing data from a long-term deployment of the robot in a human-populated environment, we show that the proposed representation improves localisation accuracy and the efficiency of path planning. We also show how to integrate the method into the ROS navigation stack for use by other roboticists.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

We present a lifelong mapping and localisation system for long-term autonomous operation of mobile robots in changing environments. The core of the system is a spatio-temporal occupancy grid that explicitly represents the persistence and periodicity of the individual cells and can predict the probability of their occupancy in the future. During navigation, our robot builds temporally local maps and integrates then into the global spatio-temporal grid. Through re-observation of the same locations, the spatio-temporal grid learns the long-term environment dynamics and gains the ability to predict the future environment states. This predictive ability allows to generate time-specific 2d maps used by the robot's localisation and planning modules. By analysing data from a long-term deployment of the robot in a human-populated environment, we show that the proposed representation improves localisation accuracy and the efficiency of path planning. We also show how to integrate the method into the ROS navigation stack for use by other roboticists.
在不断变化的环境中使用频率图增强的持久定位和终身映射
我们提出了一个移动机器人在不断变化的环境中长期自主操作的终身映射和定位系统。该系统的核心是一个时空占用网格,它明确地表示了单个细胞的持久性和周期性,并可以预测它们未来占用的概率。在导航过程中,我们的机器人建立时间局部地图,并将其整合到全球时空网格中。时空网格通过对同一地点的再观测,学习长期环境动态,获得预测未来环境状态的能力。这种预测能力可以生成特定时间的2d地图,供机器人的定位和规划模块使用。通过分析机器人在人类环境中长期部署的数据,我们表明所提出的表示提高了定位精度和路径规划的效率。我们还展示了如何将该方法集成到ROS导航堆栈中,以供其他机器人专家使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信