A Multi-Subpopulation Accelerating Particle Swarm Optimization

Yi Jiang
{"title":"A Multi-Subpopulation Accelerating Particle Swarm Optimization","authors":"Yi Jiang","doi":"10.1109/WKDD.2008.69","DOIUrl":null,"url":null,"abstract":"The particle swarm optimization is a stochastic, population-based optimization technique that can be applied to a wide range of problems. A multi- subpopulation accelerating particle swarm optimization(MAPSO)is proposed to improve the performance of the original algorithm. MAPSO views the excellent individuals as attractors and generates local small populations in the neighbor of them to maintain the diversity of the population. In the course of searching, MAPSO constantly shrinks the searching neighbor and uses the accelerating operators to speed up the evolution of MAPSO. Finally, MAPSO's efficiency is validated through optimization of benchmark functions.","PeriodicalId":101656,"journal":{"name":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","volume":"4 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2008.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The particle swarm optimization is a stochastic, population-based optimization technique that can be applied to a wide range of problems. A multi- subpopulation accelerating particle swarm optimization(MAPSO)is proposed to improve the performance of the original algorithm. MAPSO views the excellent individuals as attractors and generates local small populations in the neighbor of them to maintain the diversity of the population. In the course of searching, MAPSO constantly shrinks the searching neighbor and uses the accelerating operators to speed up the evolution of MAPSO. Finally, MAPSO's efficiency is validated through optimization of benchmark functions.
多亚种群加速粒子群优化
粒子群优化是一种基于种群的随机优化技术,可以应用于广泛的问题。为了改进原算法的性能,提出了一种多亚种群加速粒子群优化算法(MAPSO)。MAPSO将优秀个体视为吸引者,并在其附近产生局部小种群,以保持种群的多样性。在搜索过程中,MAPSO不断缩小搜索邻居,并使用加速算子加快MAPSO的进化速度。最后,通过对基准函数的优化验证了MAPSO算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信