{"title":"Top-Down Approaches in Human Pose Estimation: A State-of-the Art Review","authors":"Yusuf Enes Bölükbaşı, Rayan Abri","doi":"10.59287/icpis.856","DOIUrl":null,"url":null,"abstract":"This paper offers a comprehensive exploration of top-down approaches in human poseestimation, a key facet of computer vision. These approaches primarily focus on identifying the humansubject in an image or video, followed by determining the spatial configuration of their body joints. Suchtechniques are instrumental in an array of sectors, from healthcare and sports analytics to entertainment andsecurity systems.The document delves into the foundations of top-down pose estimation, presenting a review of establishedand emerging models. It explicates the role of key performance metrics, including Average Precision (AP),AP at specific Intersection over Union (IoU) thresholds (AP50, AP75), Average Recall (AR), and AR at anIoU of 0.50, in appraising the efficiency and reliability of these models.The paper underscores the substantial strides made in top-down pose estimation and discusses their efficacyin managing diverse real-world scenarios. It draws attention to the various challenges associated with thesetechniques, such as handling occlusions, processing images or videos with multiple individuals, andaddressing computational constraints.In conclusion, while top-down approaches in pose estimation have shown notable progress and promise,there exist avenues for further research and development. This paper intends to provide a foundationalunderstanding of these techniques and a platform for future advancements in the field.","PeriodicalId":292916,"journal":{"name":"International Conference on Pioneer and Innovative Studies","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pioneer and Innovative Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59287/icpis.856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper offers a comprehensive exploration of top-down approaches in human poseestimation, a key facet of computer vision. These approaches primarily focus on identifying the humansubject in an image or video, followed by determining the spatial configuration of their body joints. Suchtechniques are instrumental in an array of sectors, from healthcare and sports analytics to entertainment andsecurity systems.The document delves into the foundations of top-down pose estimation, presenting a review of establishedand emerging models. It explicates the role of key performance metrics, including Average Precision (AP),AP at specific Intersection over Union (IoU) thresholds (AP50, AP75), Average Recall (AR), and AR at anIoU of 0.50, in appraising the efficiency and reliability of these models.The paper underscores the substantial strides made in top-down pose estimation and discusses their efficacyin managing diverse real-world scenarios. It draws attention to the various challenges associated with thesetechniques, such as handling occlusions, processing images or videos with multiple individuals, andaddressing computational constraints.In conclusion, while top-down approaches in pose estimation have shown notable progress and promise,there exist avenues for further research and development. This paper intends to provide a foundationalunderstanding of these techniques and a platform for future advancements in the field.