Sparse Actor-Critic: Sparse Tsallis Entropy Regularized Reinforcement Learning in a Continuous Action Space

Jaegoo Choy, Kyungjae Lee, Songhwai Oh
{"title":"Sparse Actor-Critic: Sparse Tsallis Entropy Regularized Reinforcement Learning in a Continuous Action Space","authors":"Jaegoo Choy, Kyungjae Lee, Songhwai Oh","doi":"10.1109/UR49135.2020.9144780","DOIUrl":null,"url":null,"abstract":"In case of deep reinforcement learning (RL) algorithms, to achieve high performance in complex continuous control tasks, it is necessary to exploit the goal and at the same time explore the environment. In this paper, we introduce a novel off-policy actor-critic reinforcement learning algorithm with a sparse Tsallis entropy regularizer. The sparse Tsallis entropy regularizer has the effect of maximizing the expected returns while maximizing the sparse Tsallis entropy for its policy function. Maximizing the sparse Tsallis entropy makes the actor to explore the large action and state space efficiently, thus it helps us to find the optimal action at each state. We derive the iteration update rules and modify a policy iteration rule for an off-policy method. In experiments, we demonstrate the effectiveness of the proposed method in continuous reinforcement learning problems in terms of the convergence speed. The proposed method outperforms former on-policy and off-policy RL algorithms in terms of the convergence speed and performance.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"131 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In case of deep reinforcement learning (RL) algorithms, to achieve high performance in complex continuous control tasks, it is necessary to exploit the goal and at the same time explore the environment. In this paper, we introduce a novel off-policy actor-critic reinforcement learning algorithm with a sparse Tsallis entropy regularizer. The sparse Tsallis entropy regularizer has the effect of maximizing the expected returns while maximizing the sparse Tsallis entropy for its policy function. Maximizing the sparse Tsallis entropy makes the actor to explore the large action and state space efficiently, thus it helps us to find the optimal action at each state. We derive the iteration update rules and modify a policy iteration rule for an off-policy method. In experiments, we demonstrate the effectiveness of the proposed method in continuous reinforcement learning problems in terms of the convergence speed. The proposed method outperforms former on-policy and off-policy RL algorithms in terms of the convergence speed and performance.
稀疏Actor-Critic:连续动作空间中的稀疏Tsallis熵正则化强化学习
对于深度强化学习(RL)算法来说,要在复杂的连续控制任务中实现高性能,需要在探索目标的同时探索环境。本文提出了一种基于稀疏Tsallis熵正则化器的非策略行为者-批评家强化学习算法。稀疏Tsallis熵正则化器的策略函数具有期望收益最大化和稀疏Tsallis熵最大化的效果。最大化稀疏的Tsallis熵使行动者能够有效地探索大的动作和状态空间,从而帮助我们在每个状态下找到最优的动作。导出了迭代更新规则,并修改了离策略方法的策略迭代规则。在实验中,我们在收敛速度方面证明了所提出的方法在连续强化学习问题中的有效性。该方法在收敛速度和性能方面优于以往的策略和非策略强化学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信