Capsule Network with Shortcut Routing

Thanh-Vu Dang, Hoang-Trong Vo, Gwanghyun Yu, Jin Young Kim
{"title":"Capsule Network with Shortcut Routing","authors":"Thanh-Vu Dang, Hoang-Trong Vo, Gwanghyun Yu, Jin Young Kim","doi":"10.1587/transfun.2020EAP1101","DOIUrl":null,"url":null,"abstract":"This study introduces\"shortcut routing,\"a novel routing mechanism in capsule networks that addresses computational inefficiencies by directly activating global capsules from local capsules, eliminating intermediate layers. An attention-based approach with fuzzy coefficients is also explored for improved efficiency. Experimental results on Mnist, smallnorb, and affNist datasets show comparable classification performance, achieving accuracies of 99.52%, 93.91%, and 89.02% respectively. The proposed fuzzy-based and attention-based routing methods significantly reduce the number of calculations by 1.42 and 2.5 times compared to EM routing, highlighting their computational advantages in capsule networks. These findings contribute to the advancement of efficient and accurate hierarchical pattern representation models.","PeriodicalId":348826,"journal":{"name":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","volume":"53 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2020EAP1101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study introduces"shortcut routing,"a novel routing mechanism in capsule networks that addresses computational inefficiencies by directly activating global capsules from local capsules, eliminating intermediate layers. An attention-based approach with fuzzy coefficients is also explored for improved efficiency. Experimental results on Mnist, smallnorb, and affNist datasets show comparable classification performance, achieving accuracies of 99.52%, 93.91%, and 89.02% respectively. The proposed fuzzy-based and attention-based routing methods significantly reduce the number of calculations by 1.42 and 2.5 times compared to EM routing, highlighting their computational advantages in capsule networks. These findings contribute to the advancement of efficient and accurate hierarchical pattern representation models.
具有快捷路由的胶囊网络
本研究引入了“快捷路由”,这是胶囊网络中的一种新型路由机制,通过直接从本地胶囊激活全局胶囊来解决计算效率低下的问题,消除了中间层。为了提高效率,还探索了一种基于注意力的模糊系数方法。在Mnist、smallnorb和affNist数据集上的实验结果显示,分类性能相当,准确率分别达到99.52%、93.91%和89.02%。所提出的基于模糊和基于注意力的路由方法与EM路由相比,计算次数分别减少了1.42和2.5倍,突出了它们在胶囊网络中的计算优势。这些发现有助于提高高效、准确的层次模式表示模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信