C. Gimeno, François Stas, G. de Streel, D. Bol, D. Flandre
{"title":"Improving noise and linearity of CMOS wideband inductorless balun LNAs for 10-GHz software-defined radios in 28nm FDSOI","authors":"C. Gimeno, François Stas, G. de Streel, D. Bol, D. Flandre","doi":"10.1109/S3S.2017.8309267","DOIUrl":null,"url":null,"abstract":"This paper presents the analysis and optimization of inductorless balun low-noise amplifiers (LNA) in a 28-nm fully-depleted SOI CMOS technology for wideband universal software-defined radio transceivers by means of an algorithm that optimizes the main figures of merit. An optimum combination of two techniques is provided leading to a new topology that overcomes the main tradeoffs of the previous circuits improving both linearity and noise with competitive bandwidth (BW), gain and power. Post-layout simulations show a BW of 10 GHz, a gain of 17 dB, an IIP3 of 7.4 dBm, and a NF of 3.4 dB with only 2.5 mW power consumption from a 1-V supply.","PeriodicalId":333587,"journal":{"name":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2017.8309267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents the analysis and optimization of inductorless balun low-noise amplifiers (LNA) in a 28-nm fully-depleted SOI CMOS technology for wideband universal software-defined radio transceivers by means of an algorithm that optimizes the main figures of merit. An optimum combination of two techniques is provided leading to a new topology that overcomes the main tradeoffs of the previous circuits improving both linearity and noise with competitive bandwidth (BW), gain and power. Post-layout simulations show a BW of 10 GHz, a gain of 17 dB, an IIP3 of 7.4 dBm, and a NF of 3.4 dB with only 2.5 mW power consumption from a 1-V supply.