Isabelle Gomes Cardoso Machado da Costa, M. Bertolini
{"title":"Construções hiperbólicas interativas: relações métricas e bilhares","authors":"Isabelle Gomes Cardoso Machado da Costa, M. Bertolini","doi":"10.35819/remat2022v8i2id5889","DOIUrl":null,"url":null,"abstract":"Este trabalho explora a geometria do plano hiperbólico e, mais geralmente, de planos neutros, por meio de construções com retas e circunferências executadas no disco de Poincaré através do software GeoGebra. Verificam-se no plano hiperbólico os Teoremas de Ceva e de Euler, além de relações métricas associadas a baricentros e ortocentros. A técnica usual de se dobrar e desdobrar trajetórias de bilhar, em regiões poligonais, é estabelecida no plano neutro, motivada pelo traçado de poligonais minimizantes como, por exemplo, no problema de Fagnano. Essa ferramenta viabiliza descrições de bilhares em faixas e parcialmente em triângulos acutângulos, mostrando como suas propriedades se relacionam com o plano ser euclidiano ou hiperbólico. É feita uma demonstração elementar de uma propriedade de unicidade da trajetória órtica em triângulos hiperbólicos acutângulos, e são apresentadas provas completas acerca de triângulos órticos em planos neutros.","PeriodicalId":170779,"journal":{"name":"REMAT: Revista Eletrônica da Matemática","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"REMAT: Revista Eletrônica da Matemática","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35819/remat2022v8i2id5889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Este trabalho explora a geometria do plano hiperbólico e, mais geralmente, de planos neutros, por meio de construções com retas e circunferências executadas no disco de Poincaré através do software GeoGebra. Verificam-se no plano hiperbólico os Teoremas de Ceva e de Euler, além de relações métricas associadas a baricentros e ortocentros. A técnica usual de se dobrar e desdobrar trajetórias de bilhar, em regiões poligonais, é estabelecida no plano neutro, motivada pelo traçado de poligonais minimizantes como, por exemplo, no problema de Fagnano. Essa ferramenta viabiliza descrições de bilhares em faixas e parcialmente em triângulos acutângulos, mostrando como suas propriedades se relacionam com o plano ser euclidiano ou hiperbólico. É feita uma demonstração elementar de uma propriedade de unicidade da trajetória órtica em triângulos hiperbólicos acutângulos, e são apresentadas provas completas acerca de triângulos órticos em planos neutros.