Василий Иванович Качалов, Vasilii Ivanovich Kachalov
{"title":"Гладкость по вязкости решений нелинейных дифференциальных уравнений в банаховом пространстве","authors":"Василий Иванович Качалов, Vasilii Ivanovich Kachalov","doi":"10.36535/0233-6723-2021-193-99-103","DOIUrl":null,"url":null,"abstract":"Аналитические свойства решений дифференциальных уравнений с малым параметром составляют основу аналитической теории возмущений. В случае регулярной теории имеют место теоремы Пуанкаре о разложении или утверждения, вытекающие из концепции аналитического семейства в смысле Като. Когда речь идет о сингулярно возмущенных задачах, то здесь плодотворным является подход, основанный на методе регуляризации С. А. Ломова, центральным понятием которого является понятие псевдоаналитического (псевдоголоморфного) решения, т.е. такого решения, которое представимо в виде сходящегося в обычном смысле ряда по степеням малого параметра.","PeriodicalId":283651,"journal":{"name":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36535/0233-6723-2021-193-99-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Аналитические свойства решений дифференциальных уравнений с малым параметром составляют основу аналитической теории возмущений. В случае регулярной теории имеют место теоремы Пуанкаре о разложении или утверждения, вытекающие из концепции аналитического семейства в смысле Като. Когда речь идет о сингулярно возмущенных задачах, то здесь плодотворным является подход, основанный на методе регуляризации С. А. Ломова, центральным понятием которого является понятие псевдоаналитического (псевдоголоморфного) решения, т.е. такого решения, которое представимо в виде сходящегося в обычном смысле ряда по степеням малого параметра.