An Online Multiscale Clustering Algorithm for Irregular Data Sets

T. Guan, Yongling Yu, Tao Xue
{"title":"An Online Multiscale Clustering Algorithm for Irregular Data Sets","authors":"T. Guan, Yongling Yu, Tao Xue","doi":"10.1109/ICFCSA.2011.54","DOIUrl":null,"url":null,"abstract":"Clustering analysis has been widely applied to image segmentation, however, many of them cluster convex data sets with an offline way. This paper proposes a new online multiscale competitive learning approach for irregular data sets. This approach defines the multiscale learning rule for data sets using local scattering information of data and starts to cluster from only one prototype. When new vectors in another cluster are input, the initial prototype self-splits and produces new prototype to represent them. The process continues until there is no more vector. The clustering scale is defined by the local variances of clusters. We carried out experiments on irregular data sets and obtained better clustering results compared to K-means algorithm.","PeriodicalId":141108,"journal":{"name":"2011 International Conference on Future Computer Sciences and Application","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Future Computer Sciences and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFCSA.2011.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Clustering analysis has been widely applied to image segmentation, however, many of them cluster convex data sets with an offline way. This paper proposes a new online multiscale competitive learning approach for irregular data sets. This approach defines the multiscale learning rule for data sets using local scattering information of data and starts to cluster from only one prototype. When new vectors in another cluster are input, the initial prototype self-splits and produces new prototype to represent them. The process continues until there is no more vector. The clustering scale is defined by the local variances of clusters. We carried out experiments on irregular data sets and obtained better clustering results compared to K-means algorithm.
不规则数据集的在线多尺度聚类算法
聚类分析在图像分割中得到了广泛的应用,但许多聚类方法都是采用离线方式聚类凸数据集。提出了一种新的不规则数据集在线多尺度竞争学习方法。该方法利用数据的局部散射信息定义数据集的多尺度学习规则,并从一个原型开始聚类。当输入另一个簇中的新向量时,初始原型自分裂并产生新的原型来表示它们。这个过程一直持续到没有向量为止。聚类尺度由聚类的局部方差来定义。我们对不规则数据集进行了实验,得到了比K-means算法更好的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信