Dynamic value at risk estimation for BELEX15

E. Nikolić-Đorić, D. Đorić
{"title":"Dynamic value at risk estimation for BELEX15","authors":"E. Nikolić-Đorić, D. Đorić","doi":"10.51936/odxg4832","DOIUrl":null,"url":null,"abstract":"This paper uses RiskMetrics, GARCH and IGARCH models to calculate daily VaR for Belgrade Stock Exchange index BELEX15 returns based on the normal and Student t innovation distribution. In the case of GARCH and IGARCH models VaR values are obtained applying Extreme Value Theory on the standardized residuals. The Kupiec's LR statistics was used to test the accuracy of risk measurement models. The main conclusions are: (1) when modelling value-at-risk it is very important to have a good model for volatility of stock returns; (2) both stationary and integrated GARCH models outperform RiskMetrics in estimating VaR; (3) although long memory volatility is present in the BELEX15 index, IGARCH models cannot outperform GARCH type models in VaR evaluations for this index.","PeriodicalId":242585,"journal":{"name":"Advances in Methodology and Statistics","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methodology and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51936/odxg4832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper uses RiskMetrics, GARCH and IGARCH models to calculate daily VaR for Belgrade Stock Exchange index BELEX15 returns based on the normal and Student t innovation distribution. In the case of GARCH and IGARCH models VaR values are obtained applying Extreme Value Theory on the standardized residuals. The Kupiec's LR statistics was used to test the accuracy of risk measurement models. The main conclusions are: (1) when modelling value-at-risk it is very important to have a good model for volatility of stock returns; (2) both stationary and integrated GARCH models outperform RiskMetrics in estimating VaR; (3) although long memory volatility is present in the BELEX15 index, IGARCH models cannot outperform GARCH type models in VaR evaluations for this index.
BELEX15的动态风险值估计
本文采用RiskMetrics、GARCH和IGARCH模型,基于正态分布和Student t创新分布计算贝尔格莱德证券交易所指数BELEX15收益的日VaR。对于GARCH和IGARCH模型,应用极值理论对标准化残差求VaR值。使用Kupiec的LR统计来检验风险度量模型的准确性。主要结论是:(1)在建立风险价值模型时,建立一个好的股票收益波动率模型是非常重要的;(2)平稳GARCH模型和综合GARCH模型在VaR估计上都优于RiskMetrics模型;(3)尽管BELEX15指数存在长记忆波动,但IGARCH模型在对该指数进行VaR评价时不能优于GARCH模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信