Textual Entailment for Temporal Dependency Graph Parsing

Jiarui Yao, S. Bethard, Kristin Wright-Bettner, Eli Goldner, D. Harris, G. Savova
{"title":"Textual Entailment for Temporal Dependency Graph Parsing","authors":"Jiarui Yao, S. Bethard, Kristin Wright-Bettner, Eli Goldner, D. Harris, G. Savova","doi":"10.18653/v1/2023.clinicalnlp-1.25","DOIUrl":null,"url":null,"abstract":"We explore temporal dependency graph (TDG) parsing in the clinical domain. We leverage existing annotations on the THYME dataset to semi-automatically construct a TDG corpus. Then we propose a new natural language inference (NLI) approach to TDG parsing, and evaluate it both on general domain TDGs from wikinews and the newly constructed clinical TDG corpus. We achieve competitive performance on general domain TDGs with a much simpler model than prior work. On the clinical TDGs, our method establishes the first result of TDG parsing on clinical data with 0.79/0.88 micro/macro F1.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.clinicalnlp-1.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore temporal dependency graph (TDG) parsing in the clinical domain. We leverage existing annotations on the THYME dataset to semi-automatically construct a TDG corpus. Then we propose a new natural language inference (NLI) approach to TDG parsing, and evaluate it both on general domain TDGs from wikinews and the newly constructed clinical TDG corpus. We achieve competitive performance on general domain TDGs with a much simpler model than prior work. On the clinical TDGs, our method establishes the first result of TDG parsing on clinical data with 0.79/0.88 micro/macro F1.
时间依赖图解析的文本蕴涵
我们探索了临床领域的时间依赖图(TDG)解析。我们利用THYME数据集上的现有注释来半自动地构建一个TDG语料库。然后,我们提出了一种新的自然语言推理(NLI)方法来分析TDG,并对来自维基新闻的一般领域TDG和新构建的临床TDG语料库进行了评估。我们用一个比以前的工作简单得多的模型在通用域tdg上取得了具有竞争力的性能。在临床TDG上,我们的方法建立了临床数据TDG解析的第一个结果,微观/宏观F1为0.79/0.88。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信