{"title":"Rapid Capacitor Chargers for Rep-Rated Operation of Low-Inductance Compact Marx Generators","authors":"M. Giesselmann, B. Mchale, A. Neuber","doi":"10.1109/MODSYM.2006.365321","DOIUrl":null,"url":null,"abstract":"We designed and tested several rapid capacitor chargers for rep-rated operation of low-inductance, compact Marx generators with rep-rates ranging from 10 Hz to 100 Hz. All chargers are designed to be packaged in cylindrical volumes with inside diameters in the range of 5 in-12 in. Our capacitor chargers are based on H-Bridge inverters using ultra fast 600 V class IGBTs. The high voltage is obtained by driving step-up transformers with nano-crystalline cores at 30 kHz. These chargers are capable of average DC output power levels of more than 5 kW for short time operation, during which the thermal inertia of the IGBT assembly provides effective cooling (up to seconds). To achieve reliable rep-rated operation of the chargers, we developed HV feedback sensors to monitor the charging process and solid state Marx-style trigger generators to command trigger the discharge of the main Marx","PeriodicalId":410776,"journal":{"name":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MODSYM.2006.365321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We designed and tested several rapid capacitor chargers for rep-rated operation of low-inductance, compact Marx generators with rep-rates ranging from 10 Hz to 100 Hz. All chargers are designed to be packaged in cylindrical volumes with inside diameters in the range of 5 in-12 in. Our capacitor chargers are based on H-Bridge inverters using ultra fast 600 V class IGBTs. The high voltage is obtained by driving step-up transformers with nano-crystalline cores at 30 kHz. These chargers are capable of average DC output power levels of more than 5 kW for short time operation, during which the thermal inertia of the IGBT assembly provides effective cooling (up to seconds). To achieve reliable rep-rated operation of the chargers, we developed HV feedback sensors to monitor the charging process and solid state Marx-style trigger generators to command trigger the discharge of the main Marx