Hao-Wen Hsu, Shih-Hua Kuo, Wen-Hsiang Chang, Shi-Hao Chen, M. Chang, M. Chao
{"title":"Testing retention flip-flops in power-gated designs","authors":"Hao-Wen Hsu, Shih-Hua Kuo, Wen-Hsiang Chang, Shi-Hao Chen, M. Chang, M. Chao","doi":"10.1109/VTS.2013.6548880","DOIUrl":null,"url":null,"abstract":"This paper focuses on tackling two problems on testing retention flip-flops in power-gated designs. The first one is how to reduce the virtual-VDD discharge time after entering the sleep mode. The second one is how to avoid the test escape caused by the unintended initial value of the retention flip-flop during the restore function. To solve the first problem, we propose a novel ATPG framework to generate repeatedly toggling pattern pairs that can create maximal virtual-VDD drop for a cycle. To solve the second problem, we propose a new test procedure to avoid the unintended initial value of the retention flip-flop after restoring. The effectiveness of the proposed ATPG framework and the new test procedure will be validated through SPICE simulation based on an industrial MTCMOS cell library.","PeriodicalId":138435,"journal":{"name":"2013 IEEE 31st VLSI Test Symposium (VTS)","volume":"16 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2013.6548880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper focuses on tackling two problems on testing retention flip-flops in power-gated designs. The first one is how to reduce the virtual-VDD discharge time after entering the sleep mode. The second one is how to avoid the test escape caused by the unintended initial value of the retention flip-flop during the restore function. To solve the first problem, we propose a novel ATPG framework to generate repeatedly toggling pattern pairs that can create maximal virtual-VDD drop for a cycle. To solve the second problem, we propose a new test procedure to avoid the unintended initial value of the retention flip-flop after restoring. The effectiveness of the proposed ATPG framework and the new test procedure will be validated through SPICE simulation based on an industrial MTCMOS cell library.