The conjugate gradient method as applied to electromagnetic field problems

Tapan K. Sarkar
{"title":"The conjugate gradient method as applied to electromagnetic field problems","authors":"Tapan K. Sarkar","doi":"10.1109/MAP.1986.27867","DOIUrl":null,"url":null,"abstract":"The conjugate gradient method is developed for the solution of an arbitary operator equation. The fundamental differences between the conjugate gradient method and the conventional matrix methods, denoted by the generic name \"method of moments\" are also outlined. One of the major advantages of the conjugate gradient method is that a clearcut exposition on the nature of convergence can be defined. Numerical results are presented to illustrate the efficiency of this method and the FFT for certain special classes of problems.","PeriodicalId":377321,"journal":{"name":"IEEE Antennas and Propagation Society Newsletter","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Propagation Society Newsletter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAP.1986.27867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

The conjugate gradient method is developed for the solution of an arbitary operator equation. The fundamental differences between the conjugate gradient method and the conventional matrix methods, denoted by the generic name "method of moments" are also outlined. One of the major advantages of the conjugate gradient method is that a clearcut exposition on the nature of convergence can be defined. Numerical results are presented to illustrate the efficiency of this method and the FFT for certain special classes of problems.
共轭梯度法在电磁场问题中的应用
提出了求解任意算子方程的共轭梯度法。本文还概述了共轭梯度法与一般称为“矩量法”的传统矩阵法的根本区别。共轭梯度法的一个主要优点是可以明确地说明收敛的性质。数值结果说明了该方法和FFT对某些特殊类型问题的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信