Parameter Estimation of Coupled Road-Vehicle Systems

P. Gáspár, L. Nádai
{"title":"Parameter Estimation of Coupled Road-Vehicle Systems","authors":"P. Gáspár, L. Nádai","doi":"10.1109/SOFA.2007.4318329","DOIUrl":null,"url":null,"abstract":"Using a novel gray-box identification paradigm we can reconstruct both vehicle and road model parameters with one set of measurements. In the paper we present a non-linear parameter estimation method to determine the parameters of a full-car suspension system. Since there are non-measured variables that are necessary for the identification, special numerical techniques need to be applied, such as a numerical integration of the measured signals. It is also shown that the selection of the sampling time might be critical in this type of application. Based on the results of this identification procedure the road disturbance can be reconstructed. The road roughness estimation is based on this signal using autoregressive model.","PeriodicalId":205589,"journal":{"name":"2007 2nd International Workshop on Soft Computing Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Workshop on Soft Computing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOFA.2007.4318329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Using a novel gray-box identification paradigm we can reconstruct both vehicle and road model parameters with one set of measurements. In the paper we present a non-linear parameter estimation method to determine the parameters of a full-car suspension system. Since there are non-measured variables that are necessary for the identification, special numerical techniques need to be applied, such as a numerical integration of the measured signals. It is also shown that the selection of the sampling time might be critical in this type of application. Based on the results of this identification procedure the road disturbance can be reconstructed. The road roughness estimation is based on this signal using autoregressive model.
道路-车辆耦合系统参数估计
使用一种新的灰盒识别范式,我们可以用一组测量数据重建车辆和道路模型参数。本文提出了一种确定整车悬架系统参数的非线性参数估计方法。由于存在识别所必需的非测量变量,因此需要应用特殊的数值技术,例如对测量信号进行数值积分。它还表明,采样时间的选择可能是关键在这种类型的应用。基于该辨识过程的结果,可以对道路扰动进行重构。利用自回归模型对该信号进行路面粗糙度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信