Superpixel segmentation based gradient maps on RGB-D dataset

Lixing Jiang, Huimin Lu, Vo Duc My, A. Koch, A. Zell
{"title":"Superpixel segmentation based gradient maps on RGB-D dataset","authors":"Lixing Jiang, Huimin Lu, Vo Duc My, A. Koch, A. Zell","doi":"10.1109/ROBIO.2015.7418960","DOIUrl":null,"url":null,"abstract":"Superpixels aim to group homogenous pixels by a series of characteristics in an image. They decimate redundancy that may be utilized later by more computationally expensive algorithms. The most popular algorithms obtain superpixels based on an energy function on a graph. However, these graph-based methods have a high computational time consumption. This study presents a fast and high quality over-segmentation method by a watershed transform based on computing the dissimilarity of pixels among RGB(D) cues and gradient maps. Specifically, we first capture a gradient map based on an image to enhance and explain directional variations in the image scene. A distance function then measures the similarity among adjacent pixels, which is calculated according to RGB(D) values. A fast marker-controlled watershed (MCW) algorithm traverses the entire image based on the distance function. Finally, we acquire all watersheds consisting of superpixel contours. Experimental results compare state-of-the-art algorithms and highlight the effectiveness of the proposed method. As an application, the proposed superpixel algorithm can be used in applications aiming for real-time, like mobile robot saliency detection and segmentation.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7418960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Superpixels aim to group homogenous pixels by a series of characteristics in an image. They decimate redundancy that may be utilized later by more computationally expensive algorithms. The most popular algorithms obtain superpixels based on an energy function on a graph. However, these graph-based methods have a high computational time consumption. This study presents a fast and high quality over-segmentation method by a watershed transform based on computing the dissimilarity of pixels among RGB(D) cues and gradient maps. Specifically, we first capture a gradient map based on an image to enhance and explain directional variations in the image scene. A distance function then measures the similarity among adjacent pixels, which is calculated according to RGB(D) values. A fast marker-controlled watershed (MCW) algorithm traverses the entire image based on the distance function. Finally, we acquire all watersheds consisting of superpixel contours. Experimental results compare state-of-the-art algorithms and highlight the effectiveness of the proposed method. As an application, the proposed superpixel algorithm can be used in applications aiming for real-time, like mobile robot saliency detection and segmentation.
基于RGB-D数据集的超像素分割梯度图
超像素的目的是根据图像中的一系列特征对同质像素进行分组。它们减少了冗余,这些冗余可能会在以后被计算成本更高的算法所利用。最流行的算法是基于图上的能量函数获得超像素。然而,这些基于图的方法具有很高的计算时间消耗。本文提出了一种基于RGB(D)线索和梯度图之间像素不相似性计算的分水岭变换快速、高质量的过分割方法。具体来说,我们首先捕获基于图像的梯度图,以增强和解释图像场景中的方向变化。然后,距离函数测量相邻像素之间的相似性,这是根据RGB(D)值计算的。基于距离函数的快速标记控制分水岭(MCW)算法遍历整个图像。最后,我们获得了所有由超像素轮廓组成的流域。实验结果比较了最先进的算法,并突出了所提方法的有效性。作为一种应用,本文提出的超像素算法可用于移动机器人显著性检测和分割等以实时性为目标的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信