Modified Airy function solutions to optical waveguide problems

I. C. Goyal
{"title":"Modified Airy function solutions to optical waveguide problems","authors":"I. C. Goyal","doi":"10.1109/ICTON.2002.1009535","DOIUrl":null,"url":null,"abstract":"Modified Airy function (MAF) method gives an approximate solution of the wave equation for planar waveguides with an arbitrary refractive index distribution. Unlike WKB method, the MAF solution does not diverge at the turning points and there is no need of connection formulae. Comparison with exact results for practical wave guides show that the errors in MAF solutions are small. Use of a first order perturbation theory together with the MAF solution reduces very much the error in the eigenvalues. It has been shown that an improvement of the method gives almost exact eigenvalues and the eigenfunctions. Though the method will be illustrated with examples of optical wave-guides, it is equally applicable to problems in quantum mechanics and other areas of physics and engineering.","PeriodicalId":126085,"journal":{"name":"Proceedings of 2002 4th International Conference on Transparent Optical Networks (IEEE Cat. No.02EX551)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2002 4th International Conference on Transparent Optical Networks (IEEE Cat. No.02EX551)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTON.2002.1009535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Modified Airy function (MAF) method gives an approximate solution of the wave equation for planar waveguides with an arbitrary refractive index distribution. Unlike WKB method, the MAF solution does not diverge at the turning points and there is no need of connection formulae. Comparison with exact results for practical wave guides show that the errors in MAF solutions are small. Use of a first order perturbation theory together with the MAF solution reduces very much the error in the eigenvalues. It has been shown that an improvement of the method gives almost exact eigenvalues and the eigenfunctions. Though the method will be illustrated with examples of optical wave-guides, it is equally applicable to problems in quantum mechanics and other areas of physics and engineering.
光波导问题的改进Airy函数解
修正Airy函数(MAF)方法给出了任意折射率分布平面波导波动方程的近似解。与WKB方法不同,MAF解在拐点处不发散,不需要连接公式。与实际波导的精确结果比较表明,MAF解的误差很小。一阶摄动理论与MAF解的结合使用大大减小了特征值的误差。结果表明,改进后的方法给出了几乎精确的特征值和特征函数。虽然该方法将以光波导的例子来说明,但它同样适用于量子力学和其他物理和工程领域的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信